En topologio kaj rilatantaj kampoj de matematiko, aro U estas nomata kiel malfermita se, oni povas movi ĉiun punkton x el U per malfinie malgrando movo en ĉiu direkto kaj la punkto denove estos ene de U. En aliaj vortoj, se x estas ĉirkaŭbarita nur per eroj de U; ĝi ne povas esti sur rando de U.

Kiel tipa ekzemplo, konsideru la malfermita intervalon ]0,1[ konsistantan el ĉiuj reelaj nombroj x : 0 < x < 1. Ĉi tie, la topologio estas kiel la kutima topologio sur la reela linio. Se oni movos ĉi tiun punkton x iom malmulte, tiam la movita versio estos ankoraŭ nombro inter 0 kaj 1, se la movo estas ne tro granda. Pro tio, la intervalo ]0,1[ estas malfermita. Tamen, la intervalo ]0,1] konsistanta de ĉiuj nombroj x kun 0 < x ≤ 1 estas ne malfermita; se oni prenas x = 1 kaj movas ĝin eĉ malmulte en la pozitiva direkto, ĝi estos ekster (0,1].

Ni notu ankaŭ ke malfermita ne estas la kontraŭo de fermita" (fermita aro estas la komplemento de malfermita aro).

Vidu ankaŭ


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.