Oracle®VirtualBox®

Programming Guide and
Reference

Version 7.1.0 BETA2
Copyright (¢) 2004-2024 Oracle and/or its affiliates

http://www.virtualbox.org

Contents

1 Introduction

1.1
1.2
1.3
1.4

1
Modularity: the building blocks of VirtualBox 1
Two guises of the same “Main API”: the web service or COM/XPCOM 2
About web servicesin general 3
Running the web service 4
1.4.1 Command line options of vboxwebsrv 4
1.4.2 Authenticating at web servicelogon 5

2 Environment-specific notes 7
2.1 Using the object-oriented web service (OOWS) 7
2.1.1 The object-oriented web service for JAXWS. 7

2.1.2 The object-oriented web service for Python 9

2.1.3 The object-oriented web service for PHP 10

2.2 Using the raw web service with any language 10
2.2.1 Raw web service example for Java with Axis 10

2.2.2 Raw web service example for Perl 12

2.2.3 Programming considerations for the raw web service 12

2.3 Using COM/XPCOMdirectly 16
2.3.1 Python COMAPI e ettt e 17

2.3.2 Common Python bindings layer 17

233 CH++COMAPI e 18

2.3.4 Event queue ProCesSing v v v v v v v v vt e e e e e 19

2.3.5 Visual Basic and Visual Basic Script (VBS) on Windows hosts 20

2.3.6 Cbindings to the VirtualBox APT 20

3 Basic VirtualBox concepts; some examples 28
3.1 Obtaining basic machine information. Reading attributes 28
3.2 Changing machine settings: Sessions 28
3.3 Launching virtual machines 29
3.4 VirtualBoX eVENtS v it i e e e e e e e e e e e e e e 29

4 The VirtualBox shell 31
5 Main API changes to support the ARM64 architecture 33
5.1 Overview of the Changestothe Main API 33
5.1.1 Changes to Classes (Interfaces) 35

5.1.2 Changes to Enumerations 36

6 Classes (interfaces) 38
6.1 IAdditionsFacility e e e 38
6.1.1 Attributes e 38

6.2 IAdditionsStateChangedEvent (IEvent) 38
6.2.1 Attributes 39

6.3 IAppliance e e e e e e e 39
6.3.1 Attributes e 40

6.3.2 addPasswords e e e e e e 41

6.3.3 createVFSEXplorer e 41

ii

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

6.17

6.18

6.19

Contents

6.3.4 createVirtualSystemDescriptionso .. 41
6.3.5 getMediumldsForPasswordld 41
6.3.6 getPasswordlds 42
6.3.7 getWarnings i i e e e e e e e e e e e e 42
6.3.8 importMachines 42
6.3.9 Interpret e e e e e e e e e e e 42
6.3.10 read e e e e 42
6.3.11 WIIte o e e e e e e e e e e e e e 43
TAudioAdapter v e e e e e e e e e e 43
6.4.1 Attributes L. e e e e e e e 43
6.4.2 getProperty e e e e 44
6.4.3 setProperty e e e e 44
[AudioAdapterChangedEvent (IEvent) oo v v v v v ... 44
6.5.1 Attributes e e e e e 45
TAUdioSettings v v v e e e e e e e e e e e 45
6.6.1 Attributes e e e e e 45
6.6.2 getHostAudioDevice e 45
6.6.3 setHostAudioDevice i i i e e 45
IBandwidthControl e e e 45
6.7.1 Attributes e e e e e e e e 45
6.7.2 createBandwidthGroup oL 46
6.7.3 deleteBandwidthGroup 46
6.7.4 getAllBandwidthGroups 46
6.7.5 getBandwidthGroup Lo 46
BandwidthGroup« . o e e e e e e 46
6.8.1 Attributes e e e e e e e 46
IBandwidthGroupChangedEvent (IEvent) 47
6.9.1 Attributes e e e e e e 47
IBooleanFormValue (IFormValue), 47
6.10.1 getSelected. e 47
6.10.2 setSelected e 47
ICPUChangedEvent (IEVENt) v v v v i it e e e e e e e e e e e e e 47
6.11.1 Attributes e e e e e e e 48
ICPUExecutionCapChangedEvent (IEvent) 48
6.12.1 Attributes e e e e e e 48
ICPUProfile o i i e e e e e e e 48
6.13.1 Attributes e e e e e e 48
ICanShowWindowEvent (IVetoEvent) v v v v v v v e e e 49
6.14.1 Attributes e e e e e e e e e 49
ICertificate i it e e e e e e e e e e e e 49
6.15.1 Attributes e e e e e e 49
6.15.2 isCurrentlyExpired 51
6.15.3 querylnfo. e 51
IChoiceFormValue (IFormValue) i v it i i . 51
6.16.1 Attributes e e e e e e e e 52
6.16.2 getSelectedIndex 52
6.16.3 setSelectedIndex 52
IClipboardErrorEvent (IClipboardEvent) 52
6.17.1 Attributes e e e e e e e 52
IClipboardEvent (IEVent) o v v v vt e e e e et e 52
6.18.1 Attributes e e e e e e e e 52
IClipboardFileTransferModeChangedEvent (IEvent) 53
6.19.1 Attributes e e e e e e 53

iii

Contents

6.20 IClipboardModeChangedEvent (IEvent)o v v v v ... 53
6.20.1 Attributes e e 53
6.21 ICloudClient o o e e e e e e e 53
6.21.1 Attributes e e e e e e e e 53
6.21.2 addCloudMachine 54
6.21.3 clonelnstance i e e e e e e 54
6.21.4 createCloudMachine 54
6.21.5 createlmage e 54
6.21.6 deletelmage e e e e e e e e 54
6.21.7 exportlmage e e e e e e 55
6.21.8 exportVM e e e 55
6.21.9 getCloudMachine 55
6.21.10 getExportDescriptionForm 55
6.21.11 getlmagelnfo. e 55
6.21.12 getImportDescriptionForm 56
6.21.13 getlnstancelnfo e 56
6.21.14 getLaunchDescriptionForm 56
6.21.15 getMetricTypeByName 56
6.21.16 getSubnetSelectionFormo 56
6.21.17 getVnicInfo. e 57
6.21.18 importlmage e e 57
6.21.19 importInstance e e e e e e e 57
6.21.20 launchVM e e e e 57
6.21.21 listBootVolumes v i i it e e e e e e 57
6.21.22 liStIMAZES . . v v v v v e 58
6.21.23 liStINSTANCES . .« v v v v o e 58
6.21.24 listSourceBootVolumes it 58
6.21.25 [istSourcelnStances v v v v v v i e e e e e e e e e e 58
6.21.26 listVnicAttachments o o v v i it e e 59
6.21.27 pauselnstance e it e e e e e e e e e e 59
6.21.28 readCloudMachineList 59
6.21.29 readCloudMachineStubList 59
6.21.30 resetInstance o i e e e e e e e e 59
6.21.31 setupCloudNetworkEnvironment.o v v v .. 59
6.21.32 startCloudNetworkGateway 60
6.21.33 startlnstance e e e e e e e e e e 60
6.21.34 terminateInstance e e e e e e e e e e e 60
6.22 ICloudMachine @ i i e e 60
6.22.1 Attributes e e 60
6.22.2 createConsoleConnectiono i e e 62
6.22.3 deleteConsoleConnection v v v v v v i i 62
6.22.4 enumerateMetricData L. oo e 62
6.22.5 getConsoleHistory e 63
6.22.6 getDetailsForm. e 63
6.22.7 getSettingsForm L 63
6.22.8 listMetricNames v v v it e e e e e e e e e e e e e e e 63
6.22.9 powerDOWN e e e e e e e e 63
6.22.10 powerUp o v i e e e e e e e e e e e e e 63
6.22.11 reboot L e e e 64
6.22.12 refresh e e 64
6.22.13 TEMOVE i i e e e e e e e e e e e e e e e 64
6.22.14 T@Set e e e e e e e e e e e e 64
6.22.15 shutdown e 64

iv

6.23

6.24

6.25

6.26

6.27

6.28

6.29

6.30

6.31

6.32

6.33

6.34

Contents

6.22.16 terminate e e e e e e e e e e e e e e e e e 64
6.22.17 UNIeZISLEr e e e e e e e e e e e e e 64
ICloudNetwork e e e e e 64
6.23.1 Attributes e e e e e e e e e e 64
ICloudNetworkEnvironmentInfo 65
6.24.1 Attributes e e e e e e e 65
ICloudNetworkGatewayInfo, 65
6.25.1 Attributes e e e e e e e e e e e 65
ICloudProfile e e 65
6.26.1 Attributes e e e e e e e e e e 65
6.26.2 createCloudClient o i i i e e 66
6.26.3 getProperties. e 66
6.26.4 getProperty 66
6.26.5 TemMOVe e e e e e e e 66
6.26.6 setProperties e e e e e e e e e e e 67
6.26.7 SetProperty e e e e e e 67
ICloudProfileChangedEvent (IEvent), 67
6.27.1 Attributes e e e e e e e e e e e 67
ICloudProfileRegisteredEvent (IEvent) 68
6.28.1 Attributes e e e e e e e e e e e 68
ICloudProvider i i i e e e e 68
6.29.1 Attributes e e e e e e e e e 68
6.29.2 createProfile e 69
6.29.3 getProfileByName e 69
6.29.4 getPropertyDescription e e 69
6.29.5 importProfiles e 69
6.29.6 prepareUninstall 69
6.29.7 restoreProfiles e 69
6.29.8 saveProfiles e 70
ICloudProviderListChangedEvent (IEvent) 70
6.30.1 Attributes e e e e e e e e 70
ICloudProviderManagero v v v v v i i ittt 70
6.31.1 Attributes e e e e e e e e 70
6.31.2 getProviderByld 70
6.31.3 getProviderByName e 70
6.31.4 getProviderByShortName 70
ICloudProviderRegisteredEvent (IEvent) 71
6.32.1 Attributes e e e e e e 71
ICloudProviderUninstallEvent (IEvent) 71
6.33.1 Attributes e e e e e e e e e e 71
IConsole e e e e e 71
6.34.1 Attributes e e e e e e e e e e 71
6.34.2 addEncryptionPassword 74
6.34.3 addEncryptionPasswords 74
6.34.4 attachUSBDEVICE v v i i e e e e e e e e e e e e 75
6.34.5 clearAllEncryptionPasswords 75
6.34.6 createSharedFolder 75
6.34.7 detachUSBDEVICE v v v i i e et e e e e e e e e e 76
6.34.8 findUSBDeviceByAddress 76
6.34.9 findUSBDeviceByld e 76
6.34.10 getDeviceActivity e 76
6.34.11 getGuestEnteredACPIMode 77
6.34.12 getPowerButtonHandled, 77

6.35

6.36

6.37
6.38

6.39

6.40

6.41

6.42

6.43

6.44

Contents

6.34.13 PAUSE i e e e e e e e e e e 77
6.34.14 powerButton 77
6.34.15 powerDownl e 77
6.34.16 powerUp it e e e e e e e e e e e e 78
6.34.17 powerUpPaused vttt e e 78
6.34.18 removeEncryptionPassword 78
6.34.19 removeSharedFolder 79
6.34.20 TESEL . . . v i i e e e e e e e e e e e e e e e e e 79
6.34.21 TESUIME . . . & v v i e 79
6.34.22 sleepButton e e e e e e e e e e e 79
6.34.23 teleport L e e e e e 79
ICursorPositionChangedEvent (IEvent) 80
6.35.1 Attributes e e e e e e e e e 80
IDHCPConfig e e e e e e e e e 80
6.36.1 Attributes e e e e e e e e e e e 81
6.36.2 getAllOptions e e e 81
6.36.3 getOpLiON v vt i e e e e e e e e e e 82
6.36.4 TEMOVE o i i i i e e e e e e e e e e e e e e e 82
6.36.5 removeAllOptions i i e e e 82
6.36.6 removeOption e e e e e e e e e e e e e 82
6.36.7 SetOPLION v . v it e e e e e e e e 82
IDHCPGlobalConfig IDHCPConfig) oo v v v v 82
IDHCPGroupCondition i i v vt et ettt 83
6.38.1 Attributes e e e e e e e e e e e 83
6.38.2 TEMOVE v v i e 83
IDHCPGroupConfig IDHCPConfig) oot v v v 83
6.39.1 Attributes e e e e e e e e 83
6.39.2 addCondition e e 84
6.39.3 removeAllConditions e 84
IDHCPIndividualConfig (IDHCPConfig) 84
6.40.1 Attributes e e e e e e e e e e 84
IDHCPSErver o o i i e e e e e e e e e e e e e e e e e e e 85
6.41.1 Attributes e e e e e e e e 85
6.41.2 findLeaseByMAC. i it e 86
6.41.3 getConfig. e 86
6.41.4 restart e e e e e e e e e e e e e e e e e 87
6.41.5 setConfiguration e 87
6.41.6 Start e e e e e e e e e e e e e 87
6.41.7 SIOD . .« e e e e e e e e e e e e 87
IDataStream e e e e e e e e e e e e e e e e e e e 87
6.42.1 Attributes e e e e e e e e e e e 88
6.42.2 read e e e e e e 88
IDIrectory ¢ v vt e e e e e e e e e e e e 88
6.43.1 Attributes e e e e e e e e e 88
6.43.2 ClOSE e e e e e e 89
6.43.3 LISt e e e e e 89
6.43.4 read e e e e e e 89
6.43.5 rewind e e e 89
IDisplay o e e e e e e e e 89
6.44.1 Attributes e e e e e e e e e e 90
6.44.2 attachFramebuffer. 90
6.44.3 completeVHWACommand v v vunn.. 90
6.44.4 createGuestScreenInfo 90

Vi

6.45

6.46

6.47

6.48

6.49

6.50

6.51

6.52

6.53

Contents

6.44.5 detachFramebuffer 91
6.44.6 detachScreens v v i i i e e e e e e e 91
6.44.7 drawTOoSCreen v v v i i it e e e e e e e e 91
6.44.8 getScreenResolution. e 92
6.44.9 getVideoModeHint 92
6.44.10 invalidateAndUpdate it 93
6.44.11 invalidateAndUpdateScreen 93
6.44.12 notifyHiDPIOutputPolicyChange 93
6.44.13 notifyScaleFactorChange 93
6.44.14 queryFramebuffer 93
6.44.15 querySourceBitmapo 94
6.44.16 setScreenlayout 94
6.44.17 setSeamlessMode e 94
6.44.18 setVideoModeHint 94
6.44.19 takeScreenShot e 95
6.44.20 takeScreenShotToArray v v v v i i v i i 96
6.44.21 viewportChanged e 96
IDisplaySourceBitmap i it e e e e e e 96
6.45.1 Attributes e e e e e e e e e e e 97
6.45.2 queryBitmapInfo. 97
IDnDBase e e e e e e e e e e e e e e e e 97
6.46.1 Attributes e e e e e e e e e 97
6.46.2 addFormats i e e e e e e e e e e e 97
6.46.3 isFormatSupported e 98
6.46.4 removeFormats e e e e e e e e e e 98
IDnDModeChangedEvent (IEvent) v v i .. 98
6.47.1 Attributes e e e e e 98
IDnDSource (IDNDBASE) o o i i e e e e e e e e 98
6.48.1 draglsPending 98
6.48.2 drop e 99
6.48.3 receiveData e e e e e e e e e e e e 99
IDnDTarget (IDNDBASE) v v v v it e e e e e e e e e e e 99
6.49.1 cancel e e 99
6.49.2 drop e e 99
6.49.3 eNnter e e e e e e e e e e e e 100
6.49.4 leave e e e e e e e 100
6.49.5 MOVE e e e e e e e e e 101
6.49.6 sendData e e e e e e e e 101
IEmulatedUSB e e e e e e e 101
6.50.1 Attributes e e e e e e e e 101
6.50.2 webcamAttach e 102
6.50.3 webcamDetach e 102
IEVent e e e e e e 102
6.51.1 Attributes e e e e e e e 103
6.51.2 setProcessed e e e e 103
6.51.3 waitProcessed e e e e 103
IEventListener i e e e e e e e e e e e e e e e e 104
6.52.1 handleEvent e e e 104
IEventSource e e e e e e e e e 104
6.53.1 createAggregator e e e e e e e e e e 104
6.53.2 createlistener e e e e e e e e e 104
6.53.3 eventProcessedt e e e e e 104
6.53.4 fireEvent e e e e e 105

vii

6.54

6.55

6.56

6.57

6.58

6.59

6.60

6.61

6.62

6.63

6.64

6.65

6.66

6.67

6.68

Contents

6.53.5 getEvent e e e 105
6.53.6 registerListenero e e 105
6.53.7 unregisterlistener e 106
[EventSourceChangedEvent (IEvent) 106
6.54.1 Attributes e e e e e 106
[ExtPack (IExtPackBase) o i v i i i i e e e e e e e 106
6.55.1 queryObject e e 107
IEXtPackBase o i e e e e e e e e e e e e e 107
6.56.1 Attributes e e e e e e e e e e 107
6.56.2 queryLicense e e e e e e e e 109
IExtPackFile (IExtPackBase) v v v v it e e e e e e e e 109
6.57.1 Attributes e e e e e e e e 109
6.57.2 install. e e e 109
IExtPackInstalledEvent (IEvent) o v v v v v v v i e e e e e e e 109
6.58.1 Attributes e e e e e e e e 110
IEXtPackManager v v v v v v it e e e e e e e e e e e 110
6.59.1 Attributes e e e e e e e 110
6.59.2 cleanup. e e 110
6.59.3 find e e e 110
6.59.4 isExtPackUsable 110
6.59.5 openExtPackFile 111
6.59.6 queryAllPlugInsForFrontend 111
6.59.7 wuninstall e e e 111
IExtPackPlugIn e e e 111
6.60.1 Attributes e e e e e e e e e e 111
IExtPackUninstalledEvent (IEvent) o v v v v v i i e e e e 112
6.61.1 Attributes e e e e e e e e 112
[ExtraDataCanChangeEvent (IVetoEvent) 112
6.62.1 Attributes e e e e e e e e e e e 112
[ExtraDataChangedEvent (IEvent)o v v v v v ... 113
6.63.1 Attributes e e e e e e e e 113
IFile . . e e e 113
6.64.1 Attributes e e e e e e e 113
6.64.2 ClOSE e e e e e e 114
6.64.3 querylnfo. 115
6.64.4 querySize e e e e e e 115
6.64.5 read e e 115
6.64.6 readAt e e e 115
6.64.7 SEEK. e e e e e 115
6.64.8 SetACL i e e e e e e e 116
6.64.9 setSize e e e e e 116
6.64.10 Write o e e e e e e e e e e e e e e 116
6.64.11 WIIteAt o e e e e e e e e e e e e e 116
[FirmwareSettings v i i it e e e e e e 117
6.65.1 Attributes e e e e e e e e e 117
IForm e e e e e e e e e e e 118
6.66.1 Attributes e e e e e e e e e e e 118
6.66.2 apply e e 118
6.66.3 getFieldGroup 118
IFormValue e e e e 119
6.67.1 Attributes e e e e e e e e e e e 119
IFramebuffer. e e e 119
6.68.1 Attributes e e e e e e e e 119

viii

6.69

6.70

6.71

6.72

6.73

6.74

6.75

6.76

6.77

6.78

6.79

6.80

6.81

6.82

6.83

6.84

6.85

6.86

Contents

6.68.2 getVisibleRegion Lo 121
6.68.3 notifyBDEvVeNt e e e e e e 121
6.68.4 notifyChange e 121
6.68.5 notifyUpdate e e e e 122
6.68.6 notifyUpdatelmage i i i it e 122
6.68.7 processVHWACommand, 122
6.68.8 setVisibleRegion 123
6.68.9 videoModeSupportedo e 123
[FramebufferOverlay (IFramebuffer) 124
6.69.1 Attributes e e e e e e e e 124
6.69.2 MOVE . . . v v v i e e e e e e e e e e e e e e e e e e 124
IFSINfO o o e e e e e e e 124
6.70.1 Attributes e e e e e e e e e e e 125
IFsObjInfo o e e e e e 126
6.71.1 Attributes e e e e e e e e e 126
IGraphicsAdapter e e e 128
6.72.1 Attributes e e e e e e e e e e 128
IGuest e e e e e e e e 129
6.73.1 Attributes e e e e e e e e e e e 129
6.73.2 createSession e e e e e e e e e e e 131
6.73.3 findSession e e e e e 131
6.73.4 getAdditionsStatuso e 131
6.73.5 getFacilityStatus e 132
6.73.6 internalGetStatiStiCs v+ v v i e e e e e e e e e e e 132
6.73.7 setCredentials e 133
6.73.8 shutdown 133
6.73.9 updateGuestAdditions. o 133
IGuestAdditionsStatusChangedEvent (IEvent) 134
6.74.1 Attributes e e e e e e e e e 134
IGuestDebugControl e 134
6.75.1 Attributes e e e e e e e e e e 135
IGuestDebugControlChangedEvent (IEvent) 135
6.76.1 Attributes e e e e e e 135
IGuestDirectory (IDirectory) o o v v v i i i i ittt e 135
6.77.1 Attributes e e e e e e e e e 135
IGuestDirectoryEvent (IGuestSessionEvent) 136
6.78.1 Attributes e e e e e e e e e e 136
IGuestDirectoryReadEvent (IGuestDirectoryEvent) 136
6.79.1 Attributes e e e e e e e e e 136
IGuestDirectoryRegisteredEvent (IGuestDirectoryEvent) 136
6.80.1 Attributes e e e e e e e e e e 137
IGuestDirectoryStateChangedEvent (IGuestDirectoryEvent) 137
6.81.1 Attributes e e e e e e e 137
IGuestDnDSource (IDNDSOUICE) v v v v e i e e e e e e e e 137
6.82.1 Attributes e e e e e e e e e 137
IGuestDnDTarget (IDnDTarget) 137
6.83.1 Attributes e e e e e e e e e e e e 138
IGuestFile (IFile) e e e e 138
6.84.1 Attributes e e e e e e e 138
IGuestFileEvent (IGuestSessionEvent) v v v v v v v v v e e 138
6.85.1 Attributes e e e e e e e e e e 138
IGuestFileIOEvent (IGuestFileEvent) v v v v v v v .. 138
6.86.1 Attributes e e e e e e e e e e 138

ix

Contents

6.87 IGuestFileOffsetChangedEvent (IGuestFilelOEvent) 139
6.87.1 Attributes e e e e e e e e e e 139
6.88 IGuestFileReadEvent (IGuestFileIOEvent) 139
6.88.1 Attributes e e e e e e e 139
6.89 IGuestFileRegisteredEvent (IGuestFileEvent) 139
6.89.1 Attributes e e e e e e 139
6.90 IGuestFileSizeChangedEvent (IGuestFileEvent) 140
6.90.1 Attributes e e e e e e e e e e e 140
6.91 IGuestFileStateChangedEvent (IGuestFileEvent) 140
6.91.1 Attributes e e e e e e e e e 140
6.92 IGuestFileWriteEvent (IGuestFileIOEvent)« 140
6.92.1 Attributes e e e e e e e e 140
6.93 IGuestFsInfo (IFsINfo) o i i e e e e e e 141
6.93.1 Attributes e e e e e e e e e e e e 141
6.94 IGuestFsObjInfo (IFsObjInfo) i ittt 141
6.94.1 Attributes e e e e e e e e 141
6.95 IGuestKeyboardEvent (IEvent) o v v v v v ittt 141
6.95.1 Attributes e e e e e e e e e 141
6.96 IGuestMonitorChangedEvent (IEvent) 141
6.96.1 Attributes e e e e e e e e e e 142
6.97 IGuestMonitorInfoChangedEvent (IEvent) 142
6.97.1 Attributes e e e e e e e 142
6.98 IGuestMouseEvent (IReusableEvent) 143
6.98.1 Attributes e e e e e e e e e e 143
6.99 IGuestMultiTouchEvent (IEvent)« v v v v v i e e e e e et e e 143
6.99.1 Attributes e e e e e e e e e 144
6.100 IGUeStOSTYPE o v v i e e e e e e e e e e e e e e e 144
6.100.1 Attributes e e e e e e e e e e e 145
6.101 IGuestProcess (IProCeSS) v v v v v v v e e e e e e e e e e e e e e e 149
6.101.1 Attributes e e e e e e e e e e 149
6.102 IGuestProcessEvent (IGuestSessionEvent) 149
6.102.1 Attributes e e e e e e e e e 149
6.103 IGuestProcessIOEvent (IGuestProcessEvent) 150
6.103.1 Attributes e e e e e e e e e e e 150
6.104 IGuestProcessInputNotifyEvent (IGuestProcessIOEvent) 150
6.104.1 Attributes e e e e e e e e e e e 150
6.105 IGuestProcessOutputEvent (IGuestProcessIOEvent) 150
6.105.1 Attributes e e e e 151
6.106 IGuestProcessRegisteredEvent (IGuestProcessEvent) 151
6.106.1 Attributes e e e e e e e e e e e e 151
6.107 IGuestProcessStateChangedEvent (IGuestProcessEvent) 151
6.107.1 Attributes e e e e e e e e e e e e e 151
6.108 IGuestPropertyChangedEvent (IMachineEvent) 151
6.108.1 Attributes e e e e e e e e e e 152
6.109 IGuestScreenInfo e e e e e 152
6.109.1 Attributes e e e e e e e e 152
6.110 IGUESESESSION v v e i e e e e e e e e e e e e e e e e e e 153
6.110.1 Attributes e e e e e e e e 153
6.110.2 close e e e e e e 155
6.110.3 copyFromGuest e e e e 156
6.110.4 copyToGUESt e e 156
6.110.5 directoryCOPY . . « v v v v o e e e e e e e e e e e e e e e e e e 157
6.110.6 directoryCopyFromGuest o v v v it 157

Contents

6.110.7 directoryCopyToGuest o v v v ittt e e 157
6.110.8 directoryCreate v v it i e e e e e e 158
6.110.9 directoryCreateTemp o o v v i it i it 158
6.110.10directoryEXiStS v v v o e e e e e e e e e e e e e e e e e e e 159
6.110.11directoryOpen v v v i e e e e e e e e e 159
6.110.12direCtoryREMOVE v v v v o e e e e e e e e e e e e e e 160
6.110.13directoryRemoveRecursive v vttt e 160
6.110.14environmentDoesBaseVariableExist 160
6.110.15environmentGetBaseVariable 161
6.110.16environmentScheduleSet 161
6.110.17environmentScheduleUnset 161
6.110.18fileCOpPY . .« v v v o e e e e e e e e e e e 161
6.110.19fileCopyFromGuest ot i ittt e 162
6.110.20fileCopyTOGUESE v v v v i e e e e e e e e e e e e e e 162
6.110.21fileCreateTemMP . . . v v v v v v v e e e e e e e e e e e e e e e e e 163
6.110.226ileEXISES . . . v v v v i e e e e e e e e e e e e e e 163
6.110.23fileOpen e e e 164
6.110.24filleOpenEX oo e e e 164
6.110.25fileQuerySize e e 165
6.110.26fSODJCOPYAITAY . & v v v v e e e e e e e e e e e e e e e e e e 165
6.110.27fSObJEXISES . . . v v v v o e e e e e e e e e e 165
6.110.28fsObjMove e e e e e e 166
6.110.29fsObJMOVEAITAY v v v v e et e e e e e e e e e e e 166
6.110.30fsObjQueryInfo e 166
6.110.31fsObJREMOVE v v v e e e e e e e e e e e e e e e e e e 167
6.110.32fSObJREMOVEAITAY + & « v v v v v o e e e e e e e e e e e e e e e e 167
6.110.33fsObjRename 167
6.110.34fsObjSetACL o o it e e e e e e e e 168
6.110.35fsQueryFreeSpace e e e e e e 168
6.110.36fsQueryInfo e e 168
6.110.37processCreate v v v v it e e e e e e e e e e e e e e 168
6.110.38processCreateEX e 169
6.110.39processGet vt i i e e e e e e e e e e e e e 170
6.110.40symlinkCreate 171
6.110.41symlinkExists L e 171
6.110.42symlinkRead e 171
6.110.43waitFor 171
6.110.44waitForArray e e e e e 172
6.111 IGuestSessionEvent (IEvent) i v i v i e e e e e 172
6.111.1 Attributes e 172
6.112 IGuestSessionRegisteredEvent (IGuestSessionEvent) 172
6.112.1 Attributes L e 172
6.113 IGuestSessionStateChangedEvent (IGuestSessionEvent) 172
6.113.1 Attributes e 173
6.114 IGuestUserStateChangedEvent (IEvent) 173
6.114.1 Attributes L e 173
6. 115 THOSE . . v v e 174
6.115.1 Attributes e e e e e e e 174
6.115.2 addUSBDeVICESOUICE v v v v v e i e e e e e e e e e e 177
6.115.3 createHostOnlyNetworkInterface 177
6.115.4 createUSBDeviceFilter, 177
6.115.5 findHOStDVDDIIVE v v v v vt e e e e e e e e e e 178
6.115.6 findHostFloppyDrive it 178

Xi

Contents

6.115.7 findHostNetworkInterfaceByld 178
6.115.8 findHostNetworkInterfaceByName 178
6.115.9 findHostNetworkInterfacesOfType 178
6.115.10findUSBDeviceByAddress ot i 179
6.115.11findUSBDeviceByld e 179
6.115.12generateMACAdAress o i i it e e e 179
6.115.13getProcessorDescription o i e 179
6.115.14getProcessorFeatureo 179
6.115.15getProcessorSpeed e e e e e e 180
6.115.16insertUSBDeviceFilter oo 180
6.115.17isExecutionEngineSupported 180
6.115.18removeHostOnlyNetworkInterface 181
6.115.19removeUSBDeviceFilter 181
6.115.20removeUSBDeviceSourceo 181
6.116 [HostAudioDevice i i i i e e e e e e e 181
6.116.1 Attributes e e e 181
6.116.2 getProperty e e e e e e e 182
6.117 IHostAudioDeviceChangedEvent (IEvent) 182
6.117.1 Attributes L e 183
6.118 THOStDIive o o i e e e e e e e e e e e 183
6.118.1 Attributes e e e e 183
6.119 THostDrivePartition v i ittt e e e 184
6.119.1 Attributes e e e 184
6.120 IHostNameResolutionConfigurationChangeEvent (IEvent) 186
6.120.1 Attributes e 186
6.121 THostNetworkInterface i 186
6.121.1 Attributes e e 186
6.121.2 DHCPREISCOVET v v v v v e e e e e e e e e e e e e e e e e e e 188
6.121.3 enableDynamicIPConfig e 188
6.121.4 enableStaticIPConfig 188
6.121.5 enableStaticIPConfigV6 188
6.122 THostOnlyNetwork ettt e e e 189
6.122.1 Attributes e e 189
6.123 IHostPCIDevicePlugEvent (IMachineEvent) 189
6.123.1 Attributes L e 190
6.124 IHostUSBDevice (IUSBDevice) v v v i i i e e e e e e e e e 190
6.124.1 Attributes L. 190
6.125 IHostUSBDeviceFilter (IUSBDeviceFilter) o v v v v v .. 190
6.125.1 Attributes e 191
6.126 IHostUpdateAgent (IUpdateAgent) v v v v v v i i i i v v ... 191
6.126.1 Attributes L. 191
6.127 IHostVideoIlnputDevice o o v i it it e 191
6.127.1 Attributes e e e e 191
6.128 THOSEX86 . . . o o o o o e e e e e e e e e e e e e e e e e e 191
6.128.1 getProcessorCPUIDLeaf 192
6.129 IInternalMachineControl 192
6.129.1 authenticateExternal, 192
6.129.2 autoCaptureUSBDeviceso i, 192
6.129.3 beginPowerUp e e e 193
6.129.4 beginPoweringDown 193
6.129.5 captureUSBDevice e 193
6.129.6 detachAllUSBDevices i i i v it i i i et e 193
6.129.7 detachUSBDevice 194

Xii

Contents

6.129.8 ejectMedium e e 194
6.129.9 endPowerUp i e e e 194
6.129.10endPoweringDown o e 194
6.129.11finishOnlineMergeMedium 195
6.129.12lockMedia e e e 195
6.129.13onSessionEnd e 195
6.129.14pullGuestPropertieso 195
6.129.15pushGuestProperty o o v i i it 195
6.129.16reportVmStatistics e e e e e e e e 196
6.129.17runUSBDeviceFilters oo oo o 197
6.129.18unlockMedia e e 197
6.129.19updateState e e e e e 197
6.130 IInternalProgressControl o v i it e 197
6.130.1 notifyComplete e 197
6.130.2 notifyPointOfNoReturn v o v vt 198
6.130.3 setCurrentOperationProgress o v v v v v v v v oo 198
6.130.4 setNextOperationo v v v v v i e .. 198
6.130.5 waitForOtherProgressCompletion 198
6.131 IInternalSessionControl e 198
6.131.1 Attributes e 199
6.131.2 accessGUEStPIOpertyo e e e 199
6.131.3 assignRemoteMachine, 200
6.131.4 cancelSaveStateWithReason 200
6.131.5 enableVMMStatisticso 200
6.131.6 enumerateGuestProperties oo 200
6.131.7 onAudioAdapterChange i 201
6.131.8 onBandwidthGroupChange 201
6.131.9 onCPUChange o v vttt it e et e e e 201
6.131.10onCPUExecutionCapChange 201
6.131.11onClipboardFileTransferModeChange 201
6.131.12onClipboardModeChange 202
6.131.13onDnDModeChange oo it 202
6.131.14onGuestDebugControlChange 202
6.131.150nHostAudioDeviceChange 202
6.131.16onMediumChange e 203
6.131.17onNetworkAdapterChange 203
6.131.18onParallelPortChange, 203
6.131.19onRecordingScreenStateChange 203
6.131.20onRecordingStateChange 204
6.131.21onSerialPortChangeo 204
6.131.22onSharedFolderChange 204
6.131.23onShowWindowo o o 204
6.131.24onStorageControllerChange 205
6.131.250nStorageDeviceChange oo 205
6.131.26onUSBControllerChange 205
6.131.270nUSBDeviceAttach 205
6.131.280nUSBDeviceDetach 206
6.131.29onVMProcessPriorityChange 206
6.131.30onVRDEServerChange 206
6.131.3lonlineMergeMedium 207
6.131.32pauseWithReason, 207
6.131.33reconfigureMediumAttachments 207
6.131.34resumeWithReason 208

xiii

Contents

6.131.35saveStateWithReason o v v v i i v e e et 208
6.131.36uninitialize e e e 208
6.131.37updateMachineState e 209
6.132 IKeyboard e e e e e e e e e e e 209
6.132.1 Attributes e e e e e 209
6.132.2 putCAD e e e e e e e 209
6.132.3 putScancode e e e e e e 209
6.132.4 putScancodes e e e e e 210
6.132.5 putUsageCode v i i i e e e e e 210
6.132.6 releaseKeys. L e e e e e 210
6.133 IKeyboardLedsChangedEvent (IEvent) 210
6.133.1 Attributes 210
6.134 ILanguageChangedEvent (IEvent) 211
6.134.1 Attributes e 211
6.135 IMachine e e e 211
6.135.1 Attributes e e 211
6.135.2 addEncryptionPassword e 223
6.135.3 addEncryptionPasswords 223
6.135.4 addStorageController 224
6.135.5 addUSBController e 224
6.135.6 adoptSavedState e e e e e e 224
6.135.7 applyDefaults 225
6.135.8 attachDevice e e 225
6.135.9 attachDeviceWithoutMedium 227
6.135.10attachHostPCIDevice o o i v it e e ettt 228
6.135.11canShowConsoleWindow, 228
6.135.12changeEncryption Lo e e e 229
6.135.13checkEncryptionPassword 229
6.135.14clearAllEncryptionPasswords 229
6.135.15cloneTo e e e e e e 230
6.135.16createSharedFoldero 230
6.135.17deleteConfig e 231
6.135.18deleteGUeStPTOPErty v v v it e e e e 231
6.135.19deleteSnapshot L 232
6.135.20deleteSnapshotAndAllChildren 232
6.135.21deleteSnapshotRange i 233
6.135.22detachDevice e 234
6.135.23detachHoStPCIDEVICE v v v vt i e e e e e e e e e e 234
6.135.24discardSavedStateo e e e e e e 235
6.135.25discardSettingso e e e e e 235
6.135.26enumerateGuestProperties oo 235
6.135.27exportTo e e e 236
6.135.28findSnapshot 236
6.135.29getBootOrder e e 236
6.135.30getCPUStatus v v v v v e e e e e e e e e 237
6.135.31getEffectiveParavirtProvider, 237
6.135.32getEncryptionSettingso e e e e 237
6.135.33getExtraData e e e e e e e e e e 237
6.135.34getExtraDataKeys e 237
6.135.35getGuestProperty oL e e e e e e 238
6.135.36getGuestPropertyTimestamp ool 238
6.135.37getGuestPropertyValue 238
6.135.38getMedium e e e e e e 238

Xiv

Contents

6.135.39getMediumAttachment 239
6.135.40getMediumAttachmentsOfController 239
6.135.41getNetworkAdapter 239
6.135.42getParallelPort 240
6.135.43getSerialPort e e 240
6.135.44getStorageControllerBylnstance 240
6.135.45getStorageControllerByName 240
6.135.46getUSBControllerByName 241
6.135.47getUSBControllerCountByType 241
6.135.48hotPlugCPU e 241
6.135.4%h0tUnplugCPU e e e 241
6.135.50launchVMProcess« v v vt vt it e e e e e 241
6.135.51lockMachine L e 243
6.135.52mountMedium e e 244
6.135.53moveTo e e e 244
6.135.54nonRotationalDevice e e 245
6.135.55passthroughDevice 245
6.135.56queryLogFilenameo e 246
6.135.57querySavedGuestScreenInfo Lo 246
6.135.58querySavedScreenshotInfo, 246
6.135.59readlog e e e e 246
6.135.60readSavedScreenshotTOAITay v v v v v i v e e e e 247
6.135.61readSavedThumbnailToArray oo .. 247
6.135.62removeEncryptionPassword L. 247
6.135.63removeSharedFolder, 248
6.135.64removeStorageController L. 248
6.135.65removeUSBController e 248
6.135.66restoreSnapshot 248
6.135.67saveSettings e e e 249
6.135.68savesState e e e e e e e e 249
6.135.69setAutoDiscardForDevice oo 250
6.135.70setBandwidthGroupForDevice 250
6.135.71setBootOrder. e e e e 251
6.135.72setExtraData e e e e 251
6.135.73setGUeStPTOperty oo e e 252
6.135.74setGuestPropertyValue 252
6.135.75setHotPluggableForDevice 253
6.135.76setNoBandwidthGroupForDevice 253
6.135.77setSettingsFilePath oL, 254
6.135.78setStorageControllerBootable 254
6.135.79showConsoleWindow 254
6.135.80takeSnapshot 255
6.135.81temporaryEjectDevice 255
6.135.82unmountMediuml 256
6.135.83unregister e e e e e e e e e 256
6.136 IMachineDataChangedEvent (IMachineEvent) 258
6.136.1 Attributes e 258
6.137 IMachineDebugger e 258
6.137.1 Attributes e e e 258
6.137.2 detectOS e e 260
6.137.3 dumpGuestCore e e e e e 260
6.137.4 dumpGuestStack L. e 260
6.137.5 dumpHostProcessCoreot e 261

Contents

6.137.6 dumpStats e e e e e e 261
6.137.7 getCPULoad ot it e 261
6.137.8 getRegister e 261
6.137.9 getRegisters e e 262
6.137.10getStats e e e e e e e e e e e e e 262
6.137.11getUVMAndVMMFunctionTable 262
6.137.12inf0 e e e e e e 262
6.137.13injectNMI 263
6.137.14loadPlugln 263
6.137.15modifyLogDestinations o 263
6.137.16modifyLogFlags L e 263
6.137.17modifyLogGroups « « « v it e e e e e e e e e 263
6.137.18queryOSKernellog 263
6.137.19readPhysicalMemory e 264
6.137.20readVirtualMemory o i it e e e e e e e e 264
6.137.21resetStats o i e 264
6.137.22setRegister e e e 264
6.137.23setRegisters e 265
6.137.24takeGuestSample Lo 265
6.137.25unloadPlugln 265
6.137.26writePhysicalMemoryo e 265
6.137.27writeVirtualMemory e e 266
6.138 IMachineEvent (IEVeNnt) v v v v i e e e e e e e e e 266
6.138.1 Attributes e 266
6.139 IMachineGroupsChangedEvent (IMachineEvent) 266
6.139.1 Attributes e 266
6.140 IMachineRegisteredEvent (IMachineEvent) 266
6.140.1 Attributes e e e 267
6.141 IMachineStateChangedEvent (IMachineEvent) 267
6.141.1 Attributes L 267
6.142 IManagedObjectRef e 267
6.142.1 getInterfaceName v i i i it e e e e e e e 267
6.142.2 release e e e 267
6.143 IMedium o o e e e e e e e e e e e e 268
6.143.1 Attributes L e 269
6.143.2 changeEncryption e 274
6.143.3 checkEncryptionPassword, 275
6.143.4 cloneTo o v i e e e e e e e e e 275
6.143.5 cloneToBase v v it e e e e e 275
6.143.6 close e e 276
6.143.7 comPaCto e e e e e e e e e e e e 276
6.143.8 createBaseStorage i e e e e e e e e e e e e 277
6.143.9 createDiffStorage e 277
6.143.10deleteStorage e e 278
6.143.11getEncryptionSettings e e e e 278
6.143.12getProperties oo e 278
6.143.13getProperty e e e e 279
6.143.14getSnapshotlds 279
6.143.15lockRead e e 280
6.143.16lockWrite e e e e e 280
6.143.17mergeTo e e 281
6.143.18moveTo e e e e 282
6.143.19mpenForIO 282

Contents

6.143.20refreshState e e e e 282
6.143.211€Set e e e e e e e e e e e e e e e e e e 283
6.143.22reSIZ€ e e e e e e e e e e e e e e e 283
6.143.23resizeAndCloneTo e e e e 283
6.143.24setlds e e e e e 284
6.143.25setPropertieso e e e e e e e e e 284
6.143.265etProperty e e e e e e e e e e e 285
6.144 IMediumAttachment e e e e e 285
6.144.1 Attributes e e e e e e e e e e 287
6.145 IMediumChangedEvent (IEvent) i v v vt v e et 289
6.145.1 Attributes e e e e e e e e e e 289
6.146 IMediumConfigChangedEvent (IEvent) 289
6.146.1 Attributes e e e e e e e e e e e 289
6.147 IMediumFormat e e e e e e e e e e 289
6.147.1 Attributes e e e e e e e e e e e 290
6.147.2 describeFileEXtensions v v v v vt i e e e e e e e e 290
6.147.3 describeProperties 290
6.148 IMediumlIO e e e 291
6.148.1 Attributes e e e e e e e e e e 291
6.148.2 close e e 292
6.148.3 convertToStream i it e e e e e e e e e 292
6.148.4 formatFAT e e e e e e e 292
6.148.5 initializePartitionTable 292
6.148.6 read e e 293
6.148.7 Write e e e e e e e e e e 293
6.149 IMediumRegisteredEvent (IEvent) v v v v vt v et 293
6.149.1 Attributes e e e e e e e 293
6.150 IMOUSE . . v v v o e 293
6.150.1 Attributes e e e e e e e e e e e e 294
6.150.2 putEventMultiTouch 295
6.150.3 putEventMultiTouchString 295
6.150.4 putMouseEvent e 296
6.150.5 putMouseEventAbsolute 296
6.151 IMouseCapabilityChangedEvent (IEvent) 297
6.151.1 Attributes e e e e e e e e e e 297
6.152 IMousePointerShape e e 298
6.152.1 Attributes e e e e e e e e e 298
6.153 IMousePointerShapeChangedEvent (IEvent) 299
6.153.1 Attributes e e e e e e e e e e e 299
6.154 INATEngine i i i e 300
6.154.1 Attributes e e e e e e e e e 300
6.154.2 addRedirect e e 302
6.154.3 getNetworkSettings e 302
6.154.4 removeRedirect e e e e 302
6.154.5 setNetworkSettings e 303
6.155 INATNetwork o e e e e e e e e e e e e e 303
6.155.1 Attributes e e e e e e e e e e e e 303
6.155.2 addLocalMapping e 304
6.155.3 addPortForwardRule 305
6.155.4 removePortForwardRule, 305
6.155.5 start e e e e e e e e e e e e 305
6.155.6 StOP . . . v i i e e e e e e e e e e e e e 305
6.156 INATNetworkAlterEvent (INATNetworkChangedEvent) 305

xvii

Contents

6.156.1 Attributes e e e e e e e e e e e 305
6.157 INATNetworkChangedEvent (IEvent) 306
6.157.1 Attributes e e e e e e e e e e e 306
6.158 INATNetworkCreationDeletionEvent (INATNetworkAlterEvent) 306
6.158.1 Attributes e e e e e e e 306
6.159 INATNetworkPortForwardEvent (INATNetworkAlterEvent) 306
6.159.1 Attributes e e e e e e e e e e e 306
6.160 INATNetworkSettingEvent (INATNetworkAlterEvent) 307
6.160.1 Attributes e e e e e e e e e e e 307
6.161 INATNetworkStartStopEvent (INATNetworkChangedEvent) 307
6.161.1 Attributes e e e e e e e 308
6.162 INATRedirectEvent (IMachineEvent) 308
6.162.1 Attributes e e e e e e e e e e e 308
6.163 INetworkAdapter i i i i e e e e e e e 309
6.163.1 Attributes e e e e e e e e e e e e 309
6.163.2 getProperties e e e 311
6.163.3 getProperty e e e e e e e e 312
6.163.4 setProperty e e e e e e e e e 312
6.164 INetworkAdapterChangedEvent (IEvent) 312
6.164.1 Attributes e e e e e e e e e e 312
6.165 INVIaAmMSIOTe o v v e e i e e e e e e e e e e e e e e e e e e e 312
6.165.1 Attributes e e e e e e e e e 313
6.165.2 initUefiVariableStore e 313
6.166 IPCIAAAress o i i e e e e e e e e 313
6.166.1 Attributes e e e e e e e e e 313
6.166.2 asLONg e e e e e e e e e e e 314
6.166.3 fromLong. e e e 314
6.167 IPCIDeviceAttachment i v i i et et e e e e e 314
6.167.1 Attributes e e e e e e e e e e e 314
6.168 TParallelPort e e e e e e e e e 315
6.168.1 Attributes e e e e e e e e e e 315
6.169 IParallelPortChangedEvent (IEvent) v v v v v v v v v ... 315
6.169.1 Attributes e e e e e e e e e e e 316
6.170 IPerformanceCollector i i e e e e e 316
6.170.1 Attributes e e e e e e e e e e e 317
6.170.2 disableMetrics e e e e e e e e 317
6.170.3 enableMetrics e e e e e e e e e e e 318
6.170.4 getMetrics e e e e e 318
6.170.5 queryMetricsDatao 318
6.170.6 SetupMetriCst v e e e e e e e e e e e 319
6.171 IPerformanceMetriC v v v v e e e e e e e e e e e e e 320
6.171.1 Attributes e e e e e e e e e e e 320
6.172 TPlatform o e e e e e e e e 321
6.172.1 Attributes e e e e e e e e e 321
6.173 TPlatformARM e e e e e e e e 322
6.173.1 Attributes e e e e e e e e e e e e 322
6.174 IPlatformPropertieso e e e e 322
6.174.1 Attributes e e e e e e e e 322
6.174.2 getDeviceTypesForStorageBus 325
6.174.3 getMaxDevicesPerPortForStorageBus 325
6.174.4 getMaxInstancesOfStorageBus 325
6.174.5 getMaxInstancesOfUSBControllerType 325
6.174.6 getMaxNetworkAdapters 326

xviii

Contents

6.174.7 getMaxNetworkAdaptersOfType 326
6.174.8 getMaxPortCountForStorageBus 326
6.174.9 getMinPortCountForStorageBus 326
6.174.10getStorageBusForControllerType 326
6.174.11getStorageControllerHotplugCapable 326
6.174.12getStorageControllerTypesForBus 327
6.174.13getSupportedVRAMRange 327
6.175 TPlatformX86 e e 327
6.175.1 Attributes e 327
6.175.2 getCPUIDLeaf it 327
6.175.3 getCPUIDLeafByOrdinal 328
6.175.4 getCPUProperty i i i i ittt e e et 328
6.175.5 getHWVirtExProperty 329
6.175.6 removeAllCPUIDLEAVES v v v v v e et e e e e e e e e 329
6.175.7 removeCPUIDLeafottt 329
6.175.8 setCPUIDLeaf i i it e e e e e e 329
6.175.9 setCPUPIOpPerty o v v v v v i ittt et e e e e e e e e 330
6.175.10setHWVirtExProperty o oo i v vttt 330
6.176 IPTOCESS . . . o o o e e e e 330
6.176.1 Attributes L e 330
6.176.2 read e e e e e 331
6.176.3 terminate L e e e e e e e e e e e e 332
6.176.4 waitFor 332
6.176.5 WaltFOTATTay o v o i e e e e e 332
6.176.6 WIIte o i it i e e e e e e e e e e e e 332
6.176.7 WIIteAITAY« o i i e o i e e e e e e e e e e e e e e e e 333
6.177 IPTOZIESS . « o o v o o i e e e e e e e e e e e e e e e e e e e 333
6.177.1 Attributes e 333
6.177.2 cancel 335
6.177.3 waitForCompletion e 336
6.177.4 waitForOperationCompletion 336
6.178 IProgressCreatedEvent (IProgressEvent) 336
6.178.1 Attributes e e e 336
6.179 IProgressEvent (IEvent) o . L i e 337
6.179.1 Attributes e e 337
6.180 IProgressPercentageChangedEvent (IProgressEvent) 337
6.180.1 Attributes e 337
6.181 IProgressTaskCompletedEvent (IProgressEvent) 337
6.181.1 Attributes e 337
6.182 IRangedInteger64FormValue (IFormValue) 337
6.182.1 Attributes 338
6.182.2 getInteger i . e e e e e e e e e e e e e e e 338
6.182.3 setlnteger e e e e e e e e e 338
6.183 IRangedIntegerFormValue (IFormValue) 338
6.183.1 Attributes e e 338
6.183.2 getInteger e e e e 338
6.183.3 setlnteger e e e e e 339
6.184 TRecordingScreenSettings o oo oo e e e e 339
6.184.1 Attributes e e e 339
6.184.2 isFeatureEnabled 342
6.185 IRecordingScreenStateChangedEvent (IRecordingStateChangedEvent) 342
6.185.1 Attributes 342
6.186 TRecordingSettings o v v v it e e e e e e e e e e e e e e 342

Xix

Contents

6.186.1 Attributes e e e e e e e e e e 342
6.186.2 getScreenSettings oot 343
6.186.3 Start e e e e e e e e e e e e e e e e 343
6.187 IRecordingStateChangedEvent (IEvent) 343
6.187.1 Attributes e e e e e e 343
6.188 TRESOUICESIOIE . . v v v v o e 343
6.188.1 Attributes e e e e e e e e e e e 344
6.189 IReusableEvent (IEvent) o v i v i it i e e e e e e e e 344
6.189.1 Attributes e e e e e e e e 344
6.189.2 TEUSE . . . v v i e e e e e e e e e e e e e 344
6.190 IRuntimeErrorEvent (IEvent) v v i i e e e e e e 344
6.190.1 Attributes e e e e e e e e e e 345
6.191 ISerialPort e e e e e 345
6.191.1 Attributes e e e e e e e e e e e e 346
6.192 ISerialPortChangedEvent (IEvent) 347
6.192.1 Attributes e e e e e e e e 347
6.193 ISESSION . . & v v e 347
6.193.1 Attributes e e e e e e e e e e e 348
6.193.2 unlockMachine 348
6.194 ISessionStateChangedEvent (IMachineEvent) 349
6.194.1 Attributes e e e e e e 349
6.195 ISharedFolder e 349
6.195.1 Attributes e e e e e e e e e e 350
6.196 ISharedFolderChangedEvent (IEvent) 351
6.196.1 Attributes e e e e e e e e e e 351
6.197 IShowWindowEvent (IEvent) v v v v v e e e e et e e 351
6.197.1 Attributes e e e e e e e e 352
6.198 ISnapshot e 352
6.198.1 Attributes e e e e e e e e e e e 353
6.199 ISnapshotChangedEvent (ISnapshotEvent) 354
6.199.1 Attributes e e e e e e e e e e 354
6.200 ISnapshotDeletedEvent (ISnapshotEvent) 354
6.200.1 Attributes e e e e e e e e e 354
6.201 ISnapshotEvent (IMachineEvent) 355
6.201.1 Attributes e e e e e e e e e e e 355
6.202 ISnapshotRestoredEvent (ISnapshotEvent) 355
6.202.1 Attributes e e e e e e e e e e e e e 355
6.203 ISnapshotTakenEvent (ISnapshotEvent) 355
6.203.1 Attributes e e e e e e e e e e e 355
6.204 IStateChangedEvent (IEvent) o o v v v v v vttt i i 355
6.204.1 Attributes e e e e e e e e e e e e 356
6.205 IStorageController e e e 356
6.205.1 Attributes e e e e e e e e 356
6.206 IStorageControllerChangedEvent (IEvent) 357
6.206.1 Attributes e e e e e e e e e e e 357
6.207 IStorageDeviceChangedEvent (IEvent) 358
6.207.1 Attributes e e e e e e e e e e e e 358
6.208 ISLIINGAITAY . . .« v v v e e e e e e e e e e e e e e e e e 358
6.208.1 Attributes e e e e e e e e e 358
6.209 IStringFormValue (IFormValue) 358
6.209.1 Attributes e e e e e e e e e e e 359
6.209.2 etSIring i e e e e e e e e e e e e e e 359
6.209.3 SEtSLriNg v v v i e e e e e e e e e e e e e e e 359

XX

Contents

6.210 ISystemProperties i e e e e e e e e e 359
6.210.1 Attributes e e e e e e e e e e e 359
6.210.2 getCPUProfiles e 367
6.210.3 getDefaultloCacheSettingForStorageController 367
6.210.4 getExecutionEnginesForVmCpuArchitecture. 367

6.211 IToKken o e e e e e e 367
6.211.1 abandon e e 367
6.211.2 dummy e e e e e e e e 368

6.212 ITrustedPlatformModule 368
6.212.1 Attributes e e e e e e e e e e e 368

6.213 TUSBController e e e 368
6.213.1 Attributes e e e e e e e e e e e 368

6.214 IUSBControllerChangedEvent (IEvent) 369
6.214.1 Attributes e e e e e e e e e e e e 369

6.215 TUSBDEVICE v o o e 369
6.215.1 Attributes e e e e e e e 369

6.216 TUSBDeviceFilter i e e e e e e 371
6.216.1 Attributes e e e e e e e e e e e 372

6.217 TUSBDevViceFilters o ot e e e e e e e e e e e e e 373
6.217.1 Attributes e e e e e e 373
6.217.2 createDeviceFilter e 373
6.217.3 insertDeviceFilter e 374
6.217.4 removeDeviceFilter e e e 374

6.218 IUSBDeviceStateChangedEvent (IEvent) 374
6.218.1 Attributes e e e e e e e e e 375

6.219 IUSBProxyBackend 375
6.219.1 Attributes e e e e e e e e 375

6.220 IUefiVariableStore e e e e 375
6.220.1 Attributes e e e e e e e e e e e 375
6.220.2 addKek e e e 376
6.220.3 addSignatureToDb. 376
6.220.4 addSignatureToDbx e 376
6.220.5 addSignatureToMok 376
6.220.6 addVariable 377
6.220.7 changeVariable 377
6.220.8 deleteVariable 377
6.220.9 enrollDefaultMsSignatures v vttt e 377
6.220.10enrollOraclePlatformKey 377
6.220.11enrollPlatformKey e 378
6.220.12queryVariableByName 378
6.220.13queryVariables e 378

6.221 IUnattended e e e e e 378
6.221.1 Attributes e e e e e e e 379
6.221.2 constructMedia e e e e e e 384
6.221.3 detectIsoOS e e e e e e e 385
6.221.4 done e e e e e e e e 385
6.221.5 Prepareo e e e e e e e e e e e e e e e e e 385
6.221.6 reconfigureVMM e e e e 385

6.222 TUpdateAgent o v i i e e e e e e e e e 385
6.222.1 Attributes e e e e e e e e e e e 385
6.222.2 checkFOr o e e e e e e e 387
6.222.3 download e 387
6.2224 install L e e 388

xxi

Contents

6.222.5 rollback e e 388
6.223 IUpdateAgentAvailableEvent (IUpdateAgentEvent) 388
6.223.1 Attributes e 388
6.224 IUpdateAgentErrorEvent (IUpdateAgentEvent) 389
6.224.1 Attributes e e e e e 389
6.225 IUpdateAgentEvent (IEVent) o v v v v v v i e e ettt 389
6.225.1 Attributes L e 389
6.226 IUpdateAgentSettingsChangedEvent (IUpdateAgentEvent) 389
6.226.1 Attributes 389
6.227 IUpdateAgentStateChangedEvent (IUpdateAgentEvent) 390
6.227.1 Attributes e e e e e e e e 390
6.228 IVBoxSVCAvailabilityChangedEvent (IEvent) 390
6.228.1 Attributes L e 390
6.229 IVBoxSVCRegistration o i v i it i et e e e e 390
6.229.1 getVirtualBoX e e e e e e e e 390
6.230 IVESEXPIOTEr o o it e e e e e e e 390
6.230.1 Attributes e e e 391
6.230.2 cd e e 391
6.230.3 cdUpP o e 391
6.230.4 entryLiSt e e e e e e e e e e e e e e e e e 391
6.230.5 eXiStS e e e e e e e e e e e e e e 391
6.230.6 TEMOVEt v i e 392
6.230.7 update e e e e e 392
6.231 IVRDEServer o it e e e e e e e e e e e e e e 392
6.231.1 Attributes e 392
6.231.2 getVRDEPIoperty o v i v v i it e e e e e e e e e 393
6.231.3 setVRDEProperty i i ittt e e e 393
6.232 IVRDEServerChangedEvent (IEvent) 393
6.232.1 Attributes e 393
6.233 IVRDEServerInfo i e e e e e e e e 394
6.233.1 Attributes L 394
6.234 IVRDEServerInfoChangedEvent (IEvent) 395
6.234.1 Attributes e e 396
6.235 IVetoEvent (IEVent) v v v v i e e e e e e e e e e e e e e e 396
6.235.1 addApproval e 396
6.235.2 addVeto e 396
6.235.3 getApprovals L. e e 396
6.235.4 getVetoS i e e e e e e 396
6.235.5 isApproved e e e e e e e 396
6.235.6 isVetoed e e 396
6.236 IVirtualBoxX e e e e e e e e 397
6.236.1 Attributes L 397
6.236.2 checkFirmwarePresent o v v v v v v v it e 401
6.236.3 composeMachineFilename 401
6.236.4 createAppliance 402
6.236.5 createCloudNetwork 402
6.236.6 createDHCPServer i i i i i e e e e e e 402
6.236.7 createHostOnlyNetwork 402
6.236.8 createMachine e e 402
6.236.9 createMedium e e e e e 404
6.236.10createNATNetwork 405
6.236.11createSharedFolder 405
6.236.12createUnattendedInstaller 405

xxii

Contents

6.236.13findCloudNetworkByName 405
6.236.14findDHCPServerByNetworkName 405
6.236.15findHostOnlyNetworkByld 406
6.236.16findHostOnlyNetworkByName 406
6.236.17findMachine 406
6.236.18findNATNetworkByNameo .. 406
6.236.19findProgressByld 406
6.236.20getExtraData oo 407
6.236.21getExtraDataKeys e e e e 407
6.236.22getGuestOSDescsBySubtype L. Lo 407
6.236.23getGuestOSSubtypesByFamilyld 407
6.236.24getGuestOSType e 408
6.236.25getMachineStates o o e 408
6.236.26getMachinesByGroups 408
6.236.27getPlatformPropertieso e 408
6.236.280penMachine 408
6.236.290penMeditum e e e e e e e e 409
6.236.30registerMachine e 410
6.236.31lremoveCloudNetwork o Lo 410
6.236.32removeDHCPServero e 411
6.236.33removeHostOnlyNetwork 411
6.236.34removeNATNetwork 411
6.236.35removeSharedFolder 411
6.236.36setExtraData e 411
6.236.37setSettingsSecret e e e e e e e e e e e 412
6.237 IVirtualBoxClient e e e 412
6.237.1 Attributes e e 412
6.237.2 checkMachineError 413
6.238 IVirtualBoxErrorInfo 413
6.238.1 Attributes e 413
6.239 IVirtualBoxSDS L e e e e e 415
6.239.1 deregisterVBOXSVC e e 415
6.239.2 launchVMProcess o v it i i i it e e e e 415
6.239.3 registerVBoxSVC 416
6.240 IVirtualSystemDescription o e 416
6.240.1 Attributes 416
6.240.2 addDescription e e e e e e 417
6.240.3 getDescription e e e e e 417
6.240.4 getDescriptionByType oo 419
6.240.5 getValuesByType« o v e e 419
6.240.6 removeDescriptionByType 419
6.240.7 setFinalValues 420
6.241 IVirtualSystemDescriptionForm (IForm) oo oo ... 420
6.241.1 getVirtualSystemDescription 420
6.242 TWebsessionManager v v v v it i it e e 420
6.242.1 getSessionObject e 420
6.242.2 lTogoff e 421
6.242.3 10ZON e e e e 421
Enumerations (enums) 422
7.1 APICMode e 422
7.2 AccessMode e e e e e 422
7.3 AdditionsFacilityClass e e 422
7.4 AdditionsFacilityStatus e 422

xxiii

7.5

7.6

7.7

7.8

7.9

7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17
7.18
7.19
7.20
7.21
7.22
7.23
7.24
7.25
7.26
7.27
7.28
7.29
7.30
7.31
7.32
7.33
7.34
7.35
7.36
7.37
7.38
7.39
7.40
7.41
7.42
7.43
7.44
7.45
7.46
7.47
7.48
7.49
7.50
7.51
7.52
7.53
7.54
7.55
7.56
7.57

Contents

AdditionsFacilityType« . e e e 423
AdditionsRunLevelType e e 423
AdditionsUpdateFlag e 423
AudioCodecType v i i i e e e e e e e e e e e 424
AudioControllerType o v v o e e e e e e e e e e e e e e e 424
AudioDeviceStateo e e e e e e e e e e e e 424
AudioDeviceType o i i e e e e 424
AudioDirection e e e e e e e e 425
AudioDriverType o o e e e e e e e e e e e e 425
AuthType o e e e e e e e e 425
AutostopType e e e e e e 425
BandwidthGroupType o o i e 426
BitmapFormat e 426
CPUArchitecture e e e 426
CPUPropertyTypeX86 o i i e e e e e e e e e e e 426
CertificateVersion v i i i e e e e e e e e e 427
ChipsetType o o i i e e e e e e e e e e 428
CleanupMode i e e e 428
ClipboardMode e e 428
CloneMode e 428
CloneOptions v v v v et e e e e e e e e e e e e e 429
CloudImageState v v v v e e e e e e e e e e e e e e e e e e 429
CloudMachineState i i i e e 429
DHCPCONfigScope« v v ittt e e e e e e e e e e e e 430
DHCPGroupConditionType v v v v i i e e e e e e e e e e e 430
|3 (@20 o) 5 o) o 430
DHCPOptionEncoding ittt 432
DataFlags o o i i e e e e e e e e 433
DataType e e 433
DeviceACtiVILY v v i e e e e e e e e e e e e e e e e e e 433
DeviceType o v i e e e e e e e e e e e e e e 433
DirectoryCopyFlag o e e e e 434
DirectoryCreateFlag o o i i i e 434
DirectoryOpenFlag i e 434
DirectoryRemoveRecFlag 434
DirectoryStatus i e e e e e e e e e e e e e e e e e 434
DnDAction e e e e e 435
DNDMOdE e e e e e e e e e e e e e 435
EXportOptions o v i i e e e e 435
FileAccessMode i e e e e 435
FileCopyFlag e e e e 436
FileOpenAction i i i i i e e e e e e 436
FileOpenExXFlag o o i ittt e e e e e 436
FileSeekOrigin e e 437
FileSharingMode e 437
FileStatus o o e e e 437
FirmwareBootMenuMode 437
FirmwareType o e e e e e e e e 438
FormValueType o i e e e 438
FramebufferCapabilities 438
FsObjMoveFlag i e e 438
FsObjRenameFlag e e 439
FSODITYPE o o o o e e e e e e e e e e 439

XXiv

Contents

7.58 GraphicsControllerType o i e 439
7.59 GuestDebugloProvider e e e 439
7.60 GuestDebugProvider 440
7.61 GuestMonitorChangedEventType 440
7.62 GuestMonitorStatuso L e e e e e e 440
7.63 GuestMouseEventMode e e e 440
7.64 GuestSessionStatuso i i e e e e e e e e 440
7.65 GuestSessionWaitForFlag L 441
7.66 GuestSessionWaitResult e 441
7.67 GuestShutdownFlag. e 441
7.68 GuestUSerState i vt e e e e e e e e e e e 442
7.69 HWVIrtExPropertyType o i i ittt e e e e e 444
7.70 HostNetworkInterfaceMediumType 444
7.71 HostNetworkInterfaceStatus oo i i 444
7.72 HostNetworkInterfaceType v v i i i i e e e e e e e e e 444
7.73 ImportOPLioNS o v v it e e e e e e e e e e 445
7.74 lommuType e 445
7.75 KeyboardHIDTyYpe« v ittt e e e e e e e e e 445
7.76 KeyboardLED e 445
7.77 LockType o o e e e e e e e e e e e 445
7.78 MachineState e e e 446
7.79 MediumFormatCapabilities e 449
7.80 MediumsState e e e e e e e e 449
7.81 MediumType o o o i e e e e 450
7.82 MediumVariant e e e e e e e e e e e e 450
7.83 MetricType o v i e e e e e e e e e e e e e 451
7.84 MouseButtonState L. e e e e e e e 451
7.85 NATAliasMode o o e e e e e e 451
7.86 NATProtocol o i i i e e e e e e e e e 451
7.87 NetworkAdapterPromiscModePolicy, 452
7.88 NetworkAdapterType i i e e e e 452
7.89 NetworkAttachmentType o v i i it it 452
7.90 ParavirtProvider e e e e e e e e 453
7.91 PartitionTableType i it e e e e e 453
7.92 PartitionType 453
7.93 PartitioningType e e e e e e e e e e e e 458
7.94 PathStyle e e e 458
7.95 PlatformArchitecture e e e e e e 458
7.96 PointingHIDTYPE o v i it e e e e e e e e e e e e e e e 458
7.97 PortMode e e e e 459
7.98 ProcessCreateFlag e e e e 459
7.99 ProcessinputFlag e e e e 460
7.100 ProcessInputStatus o it e e e e e e e 460
7.101 ProcessOutputFlag e 460
7.102 ProcessPriority e e e e 460
7.103 ProcessStatlis« v it i e e e e e e e e e e e e e e e 461
7.104 ProcessWaitForFlag e e e 461
7.105 ProcessWaitResult e e e e e e e e 462
7.106 ProcessorFeature L e e e e 462
7.107 ProxyMode e e 462
7108 Reason oo e e e e e e e 463
7.109 RecordingAudioCodec i i i i e e e 463
7.110 RecordingCodecDeadline 463

8

Contents

7.111 RecordingDestination e 463
7.112 RecordingFeature i it e e 463
7.113 RecordingRateControlMode, 464
7.114 RecordingVideoCodec o o i i i e e e e 464
7.115 RecordingVideoScalingModeo 464
7116 SCOPE . . . v v o e e e e e e e e e e 464
7.117 ScreenLayoutMode e e 465
7.118 SessionState e e e e e e e e e 465
7.119 SessionType o e e e e e e e e e e e e e e e e 465
7.120 SettingsVersiont e e e e e e e e e e e 466
7.121 SignatureTypeo e e e e e e e e e e e e e e 466
7.122 StorageBus L e e 467
7.123 StorageControllerType e 467
7.124 SymlinkPolicy e e e e e e 468
7.125 SymlinkReadFlag e 468
7.126 SymlinkType o e e e 468
7.127 TouchContactState o v it ittt e 468
7028 TpmTyPe . . . o o e e e e e e e e 469
7.129 USBConnectionSpeed e 469
7.130 USBControllerType o v v it e e e e e e e e e e e e e e e 469
7.131 USBDeviceFilterAction o vt i i it e 470
7.132 USBDeviceState o i e e e e e e e e e e e e 470
7133 UartType o o o e e e e 470
7.134 UefiVariableAttributes e 471
7.135 UpdateChannel i it e 471
7.136 UpdateSeverity v v i i e e e e e e e e e e e e e e e 471
7.137 UpdateState v i i e e e e e e e e e e e e e 472
7.138 VBoxEventType e e e 472
7039 VESType . . . o o o e e e 475
7.140 VMExecutionEngine e 476
7.141 VMProcPriority o i i i i e e e e e e e e e e e e e e e e 476
7.142 VirtualSystemDescriptionType o o e e e e 476
7.143 VirtualSystemDescriptionValueTypeo oL 478
Working with the Cloud 479
8.1 OCIfeatures v v v v v e 479
8.2 Function ICloudClient::exportVM it 479
8.3 Function ICloudClient::launchVM 480
8.4 Function ICloudClient::getInstancelnfo 480
8.5 Function ICloudClient::importlnstance 481
Host-Guest Communication Manager 482
9.1 Virtual hardware implementation 482
9.2 Protocol specification e e e e 482

9.2.1 Requestheader 482

9.22 CONNECL o ittt e e e e e 483

9.2.3 DisCONNECt v i i e e e e e e e e 484

9.24 Call32and Call64 e 484

9.2.5 Cancel e 485
9.3 Guestsoftware interface 485

9.3.1 Theguestdriverinterface. 485

9.3.2 Guest application interface L 487
9.4 HGCM Service Implementation 488

XXVi

Contents

10 RDP Web Control
10.1 RDPWeb features o i v i i i e e e e e e e e e
10.2 RDPWebreference i i i i i i e e e
10.2.1 RDPWeb functions v v i v i i it et e e
10.2.2 Embedding RDPWeb in an HTML page
10.3 RDPWebchangelog. i e
10.3.1 Version 1.2.28 e e e e e
10.3.2 Version 1.1.26 e e e e e e
10.3.3 Version 1.0.24 e e e

11 Drag and Drop
11.1 BaSiCCONCEPLS .« ¢ v v v o o i e
11.2 Supported formats e e e e e

12 VirtualBox external authentication modules

13 Using the Java API
13.1 Introduction i i i e e e e e e e e e
13.2 Requirements o v i v ittt e e e e e e e e e
13.3 Example o o e e e e e e e e e e e e e e

14 License information

15 Main API change log
15.1 Incompatible API changes with version7.1
15.2 Incompatible API changes with version7.0
15.3 Incompatible API changes with version 6.1
15.4 Incompatible API changes with version 6.0
15.5 Incompatible API changes with version5.x
15.6 Incompatible API changes with version5.1.28
15.7 Incompatible API changes with version5.0
15.8 Incompatible API changes with version4.3
15.9 Incompatible API changes with version4.2
15.10 Incompatible API changes with version4.1
15.11 Incompatible API changes with version4.0
15.12 Incompatible API changes with version 3.2
15.13 Incompatible API changes with version 3.1
15.14 Incompatible API changes with version3.0
15.15 Incompatible API changes with version2.2
15.16 Incompatible API changes with version2.1

XXVvii

1 Introduction

VirtualBox comes with comprehensive support for third-party developers. This Software Devel-
opment Kit (SDK) contains all the documentation and interface files that are needed to write
code that interacts with VirtualBox.

1.1 Modularity: the building blocks of VirtualBox

VirtualBox is cleanly separated into several layers, which can be visualized like in the picture
below:

VirtualBox GUI VBoxManage

VirtualBox Main API

VirtualBox
RDP
Server Virtual
Devices

binary
Portability compatible

i VirtualBox hypervisor P e

cross platform 3 part
B o . " ar
abstraction layer Windows, Linux, OS X, Solaris, FreeBSD plug—iny

Resource
Monitor
Windows

Kernel mode

The orange area represents code that runs in kernel mode, the blue area represents userspace
code.

At the bottom of the stack resides the hypervisor — the core of the virtualization engine, con-
trolling execution of the virtual machines and making sure they do not conflict with each other
or with whatever else the host computer is doing.

On top of the hypervisor, additional internal modules provide extra functionality. For example,
the RDP server, which can deliver the graphical output of a VM remotely to an RDP client, is a
separate module that is only loosely tacked onto the virtual graphics device.

What is primarily of interest for purposes of the SDK is the API layer block that sits on top of
all the previously mentioned blocks. This API, which we call the “Main API”, exposes the entire
feature set of the virtualization engine below. It is completely documented in this SDK Reference
— see chapter 6, Classes (interfaces), page 38 and chapter 7, Enumerations (enums), page 422
— and available to anyone who wishes to control VirtualBox programmatically. We chose the
name “Main API” to differentiate it from other programming interfaces of VirtualBox that may
be publicly accessible.

With the Main API, you can create, configure, start, stop and delete virtual machines, retrieve
performance statistics about running VMs, configure the VirtualBox installation in general, and

1 Introduction

more. In fact, internally, the front-end programs VirtualBox and VBoxManage use nothing but
this API as well — there are no hidden backdoors into the virtualization engine for our own front-
ends. This ensures the entire Main API is both well-documented and well-tested. (The same
applies to VBoxHeadless, which is not shown in the image.)

1.2 Two guises of the same “Main API”: the web service or
COM/XPCOM

There are several ways in which the Main API can be called by other code:

1. VirtualBox comes with a web service that maps nearly the entire Main API. The web ser-
vice ships in a stand-alone executable (vboxwebsrv) that, when running, acts as an HTTP
server, accepts SOAP connections and processes them.

Since the entire web service API is publicly described in a web service description file (in
WSDL format), you can write client programs that call the web service in any language with
a toolkit that understands WSDL. These days, that includes most programming languages
that are available: Java, C++, .NET, PHP, Python, Perl and probably many more.

All of this is explained in detail in subsequent chapters of this book.

There are two ways in which you can write client code that uses the web service:

a) For Java as well as Python, the SDK contains easy-to-use classes that allow you to use
the web service in an object-oriented, straightforward manner. We shall refer to this
as the “object-oriented web service (OOWS)“.

The OO bindings for Java are described in chapter 13, Using the Java API, page 495,
those for Python in chapter 2.1.2, The object-oriented web service for Python, page 9.

b) Alternatively, you can use the web service directly, without the object-oriented client
layer. We shall refer to this as the “raw web service”.

You will then have neither native object orientation nor full type safety, since web
services are neither object-oriented nor stateful. However, in this way, you can write
client code even in languages for which we do not ship object-oriented client code; all
you need is a programming language with a toolkit that can parse WSDL and generate
client wrapper code from it.

We describe this further in chapter 2.2, Using the raw web service with any language,
page 10, with samples for Java and Perl.

2. Internally, for portability and easier maintenance, the Main API is implemented using the
Component Object Model (COM), an interprocess mechanism for software components
originally introduced by Microsoft for Microsoft Windows. On a Windows host, VirtualBox
will use Microsoft COM; on other hosts where COM is not present, VirtualBox ships with
XPCOM, a free software implementation of COM originally created by the Mozilla project
for their browsers.

So if you are familiar with COM and the C++ programming language (or with any other
programming language that can handle COM/XPCOM objects, such as Java, Visual Ba-
sic or C#), then you can use the COM/XPCOM API directly. VirtualBox comes with all
the necessary files and documentation to build fully functional COM applications. For an
introduction, please see chapter 2.3, Using COM/XPCOM directly, page 16 below.

The VirtualBox front-ends (the graphical user interfaces as well as the command line),
which are all written in C+ +, use COM/XPCOM to call the Main API. Technically, the web
service is another front-end to this COM API, mapping almost all of it to SOAP clients.

If you are wondering which approach to choose, here are a few comparisons:

1 Introduction

Web service COM/XPCOM

Pro: Easy to use with Java and Python with the Con: Usable from languages where

object-oriented web service; extensive support COM bridge available (most languages

even with other languages (C+ +, .NET, PHP, on Windows platform, Python and C+ +

Perl and others) on other hosts)

Pro: Client can be on remote machine Con: Client must be on the same host
where virtual machine is executed

Con: Significant overhead due to XML Pro: Relatively low invocation overhead

marshalling over the wire for each method call

In the following chapters, we will describe the different ways in which to program VirtualBox,
starting with the method that is easiest to use and then increasing in complexity as we go along.

1.3 About web services in general

Web services are a particular type of programming interface. Whereas, with “normal” program-
ming, a program calls an application programming interface (API) defined by another program
or the operating system and both sides of the interface have to agree on the calling convention
and, in most cases, use the same programming language, web services use Internet standards
such as HTTP and XML to communicate.!

In order to successfully use a web service, a number of things are required — primarily, a web
service accepting connections; service descriptions; and a client that connects to that web service.
Connections to the VirtualBox web service are governed by the SOAP standard, which describes
how messages are to be exchanged between a service and its clients; the service descriptions are
governed by WSDL.

In the case of VirtualBox, this translates into the following three components:

1. The VirtualBox web service (the “server”): this is the vboxwebsrv executable shipped with
VirtualBox. Once you start this executable (which acts as an HTTP server on a specific
TCP/IP port), clients can connect to the web service and thus control a VirtualBox installa-
tion.

2. VirtualBox also comes with WSDL files that describe the services provided by the web ser-
vice. You can find these files in the sdk/bindings/webservice/ directory. These files are
understood by the web service toolkits that are shipped with most programming languages
and enable you to easily access a web service even if you don’t use our object-oriented
client layers. VirtualBox is shipped with pre-generated web service glue code for several
languages (Python, Perl, Java).

3. A client that connects to the web service in order to control the VirtualBox installation.

Unless you use some of the samples shipped with VirtualBox, this needs to be written by
you.

'In some ways, web services promise to deliver the same thing as CORBA and DCOM did years ago. However, while
these previous technologies relied on specific binary protocols and thus proved to be difficult to use between diverging
platforms, web services circumvent these incompatibilities by using text-only standards like HTTP and XML. On the
downside (and, one could say, typical of things related to XML), a lot of standards are involved before a web service
can be implemented. Many of the standards invented around XML are used one way or another. As a result, web
services are slow and verbose, and the details can be incredibly messy. The relevant standards here are called SOAP
and WSDL, where SOAP describes the format of the messages that are exchanged (an XML document wrapped in
an HTTP header), and WSDL is an XML format that describes a complete API provided by a web service. WSDL in
turn uses XML Schema to describe types, which is not exactly terse either. However, as you will see from the samples
provided in this chapter, the VirtualBox web service shields you from these details and is easy to use.

1 Introduction

1.4 Running the web service

The web service ships in a stand-alone executable, vboxwebsrv, that, when running, acts as
an HTTP server, accepts SOAP connections, remotely or from the same machine, and processes
them.

Note: The web service executable is not delivered with the VirtualBox SDK, but instead
ships with the standard VirtualBox binary package for your specific platform. The SDK
contains only platform-independent text files and documentation so thus the vboxweb-
srv binary is shipped with the platform-specific packages. Therefore the information on
how to run vboxwebsrv as a service is included in the VirtualBox documentation and
not the SDK.

The vboxwebsrv program, which implements the web service, is a text-mode (console) pro-
gram which, after being started, simply runs until it is interrupted with Ctrl-C or a kill command.

Once the web service is started, it acts as a front-end to the VirtualBox installation of
the user account that it is running under. In other words, if the web service is run under
the user account of userl, it will see and manipulate the virtual machines and other data
represented by the VirtualBox data of that user (for example, on a Linux machine, under
/home/userl/.config/VirtualBox; see the VirtualBox User Guide for details on where this
data is stored).

1.4.1 Command line options of vboxwebsrv

The web service supports the following command line options:

e --help (or -h): print a brief summary of command line options.

e --background (or -b): run the web service as a background daemon. This option is not
supported on Windows hosts.

e --host (or -H): This specifies the host to bind to and defaults to “localhost”.
e --port (or -p): This specifies which port to bind to on the host and defaults to 18083.
e --ssl (or -s): This enables SSL support.

e --keyfile (or -K): This specifies the file name containing the server private key and the
certificate. This is a mandatory parameter if SSL is enabled.

e --passwordfile (or -a): This specifies the file name containing the password for the
server private key. If unspecified or an empty string is specified this is interpreted as an
empty password (i.e. the private key is not protected by a password). If the file name
- is specified then then the password is read from the standard input stream, otherwise
from the specified file. The user is responsible for appropriate access rights to protect the
confidential password.

e --cacert (or -c): This specifies the file name containing the CA certificate appropriate for
the server certificate.

e --capath (or -C): This specifies the directory containing several CA certificates appropriate
for the server certificate.

e --dhfile (or -D): This specifies the file name containing the DH key. Alternatively it can
contain the number of bits of the DH key to generate. If left empty, RSA is used.

1 Introduction

e --randfile (or -r): This specifies the file name containing the seed for the random num-
ber generator. If left empty, an operating system specific source of the seed.

e --timeout (or -t): This specifies the session timeout, in seconds, and defaults to 300 (five
minutes). A web service client that has logged on but makes no calls to the web service
will automatically be disconnected after the number of seconds specified here, as if it had
called the IWebSessionManager::logoff () method provided by the web service itself.

It is normally vital that each web service client call this method, as the web service can
accumulate large amounts of memory when running, especially if a web service client does
not properly release managed object references. As a result, this timeout value should not
be set too high, especially on machines with a high load on the web service, or the web
service may eventually deny service.

e --check-interval (or -i): This specifies the interval in which the web service checks
for timed-out clients, in seconds, and defaults to 5. This normally does not need to be
changed.

e --threads (or -T): This specifies the maximum number or worker threads, and defaults
to 100. This normally does not need to be changed.

e --keepalive (or -k): This specifies the maximum number of requests which can be sent
in one web service connection, and defaults to 100. This normally does not need to be
changed.

e --authentication (or -A): This specifies the desired web service authentication method.
If the parameter is not specified or the empty string is specified it does not change the
authentication method, otherwise it is set to the specified value. Using this parameter is a
good measure against accidental misconfiguration, as the web service ensures periodically
that it isn’t changed.

e --verbose (or -v): Normally, the web service outputs only brief messages to the console
each time a request is served. With this option, the web service prints much more de-
tailed data about every request and the COM methods that those requests are mapped to
internally, which can be useful for debugging client programs.

e --pidfile (or -P): Name of the PID file which is created when the daemon was started.

e --logfile (or -F) <file>: If this is specified, the web service not only prints its output
to the console, but also writes it to the specified file. The file is created if it does not exist;
if it does exist, new output is appended to it. This is useful if you run the web service
unattended and need to debug problems after they have occurred.

e --logrotate (or -R): Number of old log files to keep, defaults to 10. Log rotation is
disabled if set to O.

e --logsize (or -S): Maximum size of log file in bytes, defaults to 100MB. Log rotation is
triggered if the file grows beyond this limit.

e --loginterval (or -I): Maximum time interval to be put in a log file before rotation is
triggered, in seconds, and defaults to one day.

1.4.2 Authenticating at web service logon

As opposed to the COM/XPCOM variant of the Main API, a client that wants to use the web
service must first log on by calling the IWebsessionManager::logon() API that is specific to the
web service. Logon is necessary for the web service to be stateful; internally, it maintains a
session for each client that connects to it.

1 Introduction

The IWebsessionManager::logon() API takes a user name and a password as arguments,
which the web service then passes to a customizable authentication plugin that performs the
actual authentication.

For testing purposes, it is recommended that you first disable authentication with the com-
mand:

VBoxManage setproperty websrvauthlibrary null

Warning: This will cause all logons to succeed, regardless of user name or password.
This should of course not be used in a production environment.

Generally, the mechanism by which clients are authenticated is configurable by way of the
VBoxManage command:

VBoxManage setproperty websrvauthlibrary default|null|<library>

This way you can specify any shared object/dynamic link module that conforms with the
specifications for VirtualBox external authentication modules as laid out in section VRDE au-
thentication of the VirtualBox User Guide; the web service uses the same kind of modules as the
VirtualBox VRDE server. For technical details on VirtualBox external authentication modules see
chapter 12, VirtualBox external authentication modules, page 493

By default, after installation, the web service uses the VBoxAuth module that ships with
VirtualBox. This module uses PAM on FreeBSD, Linux, and Solaris hosts to authenticate users.
Any valid username/password combination is accepted, it does not have to be the username and
password of the user running the web service daemon. If vboxwebsrv doesn’t run as root PAM
authentication can fail, because the /etc/shadow file, which is used by PAM, is only readable by
root. On most Linux distributions PAM uses a suid root helper internally, so make sure you test
this before deploying it. One can override authentication failures due to lack of read privileges
of the shadow password file by setting the environment variable VBOX_PAM_ALLOW_INACTIVE.
Please use this variable carefully and only if you fully understand what you’re doing.

2 Environment-specific notes

The Main API described in chapter 6, Classes (interfaces), page 38 and chapter 7, Enumerations
(enums), page 422 is mostly identical in all the supported programming environments which
have been briefly mentioned in the introduction of this book. As a result, the Main API's general
concepts described in chapter 3, Basic VirtualBox concepts; some examples, page 28 are the same
whether you use the object-oriented web service (OOWS) for JAX-WS or a raw web service
connection via, say, Perl, or whether you use C++ COM bindings.

Some things are different depending on your environment, however. These differences are
explained in this chapter.

2.1 Using the object-oriented web service (OOWS)

As explained in chapter 1.2, Two guises of the same “Main API”: the web service or COM/XPCOM,
page 2, VirtualBox ships with client-side libraries for Java, Python and PHP that allow you to use
the VirtualBox web service in an intuitive, object-oriented way. These libraries shield you from
the client-side complications of managed object references and other implementation details that
come with the VirtualBox web service. (If you are interested in these complications, have a look
at chapter 2.2, Using the raw web service with any language, page 10).

We recommend that you start your experiments with the VirtualBox web service by using our
object-oriented client libraries for JAX-WS, a web service toolkit for Java, which enables you to
write code to interact with VirtualBox in the simplest manner possible.

As “interfaces”, “attributes” and “methods” are COM concepts, please read the documentation
in chapter 6, Classes (interfaces), page 38 and chapter 7, Enumerations (enums), page 422 with
the following notes in mind.

The OOWS bindings attempt to map the Main API as closely as possible to the Java, Python
and PHP languages. In other words, objects are objects, interfaces become classes, and you can
call methods on objects as you would on local objects.

The main difference remains with attributes: to read an attribute, call a “getXXX” method,
with “XXX” being the attribute name with a capitalized first letter. So when the Main API Ref-
erence says that IMachine has a “name” attribute (see IMachine::name), call getName() on an
IMachine object to obtain a machine’s name. Unless the attribute is marked as read-only in the
documentation, there will also be a corresponding “set” method.

2.1.1 The object-oriented web service for JAX-WS

JAX-WS is a powerful toolkit by Sun Microsystems to build both server and client code with Java.
It is part of Java 6 (JDK 1.6), but can also be obtained separately for Java 5 (JDK 1.5). The
VirtualBox SDK comes with precompiled OOWS bindings working with both Java 5 and 6.

The following sections explain how to get the JAX-WS sample code running and explain a few
common practices when using the JAX-WS object-oriented web service.

2.1.1.1 Preparations

Since JAX-WS is already integrated into Java 6, no additional preparations are needed for Java
6.

If you are using Java 5 (JDK 1.5.x), you will first need to download and install an external JAX-
WS implementation, as Java 5 does not support JAX-WS out of the box; for example, you can

2 Environment-specific notes

download one from here: https://jax-ws.devjava.net/2.1.4/JAXWS2.1.4-20080502.jar. Then
perform the installation (java -jar JAXWS2.1.4-20080502.jar).
2.1.1.2 Getting started: running the sample code

To run the OOWS for JAX-WS samples that we ship with the SDK, perform the following steps:

1. Open a terminal and change to the directory where the JAX-WS samples reside.! Examine
the header of Makefile to see if the supplied variables (Java compiler, Java executable)
and a few other details match your system settings.

2. To start the VirtualBox web service, open a second terminal and change to the directory
where the VirtualBox executables are located. Then type:

./vboxwebsrv -v

The web service now waits for connections and will run until you press Ctrl+C in this
second terminal. The -v argument causes it to log all connections to the terminal. (See
chapter 1.4, Running the web service, page 4 for details on how to run the web service.)

3. Back in the first terminal and still in the samples directory, to start a simple client example
just type:

make runlé

if you're on a Java 6 system; on a Java 5 system, run make runl5 instead.

This should work on all Unix-like systems such as Linux and Solaris. For Windows systems,
use commands similar to what is used in the Makefile.

This will compile the clienttest. java code on the first call and then execute the resulting
clienttest class to show the locally installed VMs (see below).

The clienttest sample imitates a few typical command line tasks that VBoxManage,
VirtualBox’s regular command-line front-end, would provide (see the VirtualBox User Guide for
details). In particular, you can run:

e java clienttest show vms: show the virtual machines that are registered locally.

e java clienttest list hostinfo: show various information about the host this
VirtualBox installation runs on.

e java clienttest startvm <vmname|uuid>: start the given virtual machine.

The clienttest.java sample code illustrates common basic practices how to use the
VirtualBox OOWS for JAX-WS, which we will explain in more detail in the following chapters.
2.1.1.3 Logging on to the web service

Before a web service client can do anything useful, two objects need to be created, as can be
seen in the clienttest constructor:

1In sdk/bindings/glue/java/.

https://jax-ws.dev.java.net/2.1.4/JAXWS2.1.4-20080502.jar

2 Environment-specific notes

1. An instance of IWebsessionManager, which is an interface provided by the web service to
manage “web sessions” — that is, stateful connections to the web service with persistent
objects upon which methods can be invoked.

In the OOWS for JAX-WS, the IWebsessionManager class must be constructed explicitly, and
a URL must be provided in the constructor that specifies where the web service (the server)
awaits connections. The code in clienttest.java connects to “http://localhost:18083/“,
which is the default.

The port number, by default 18083, must match the port number given to the vboxwebsrv
command line; see chapter 1.4.1, Command line options of vboxwebsrv, page 4.

2. After that, the code calls IWebsessionManager::logon(), which is the first call that actually
communicates with the server. This authenticates the client with the web service and
returns an instance of IVirtualBox, the most fundamental interface of the VirtualBox web
service, from which all other functionality can be derived.

If logon doesn’t work, please take another look at chapter 1.4.2, Authenticating at web
service logon, page 5.

2.1.1.4 Object management

The current OOWS for JAX-WS has certain memory management related limitations. When
you no longer need an object, call its IManagedObjectRef::release() method explicitly, which
frees appropriate managed reference, as is required by the raw web service; see chapter 2.2.3.3,
Managed object references, page 14 for details. This limitation may be reconsidered in a future
version of the VirtualBox SDK.

2.1.2 The object-oriented web service for Python

VirtualBox comes with two flavors of a Python API: one for web service, discussed here, and
one for the COM/XPCOM API discussed in chapter 2.3.1, Python COM API, page 17. The client
code is mostly similar, except for the initialization part, so it is up to the application developer
to choose the appropriate technology. Moreover, a common Python glue layer exists, abstracting
out concrete platform access details, see chapter 2.3.2, Common Python bindings layer, page 17.

The minimum supported Python version is 2.6.

As indicated in chapter 1.2, Two guises of the same “Main API”: the web service or COM/XPCOM,
page 2, the COM/XPCOM API gives better performance without the SOAP overhead, and does not
require a web server to be running. On the other hand, the COM/XPCOM Python API requires a
suitable Python bridge for your Python installation (VirtualBox ships the most important ones for
each platform?). On Windows, you can use the Main API from Python if the Win32 extensions
package for Python® is installed. Versions of Python Win32 extensions earlier than 2.16 are
known to have bugs, leading to issues with VirtualBox Python bindings, so please make sure to
use latest available Python and Win32 extensions.

The VirtualBox OOWS for Python relies on the Python ZSI SOAP implementation (see
http://pywebsves.sourceforge.net/zsi.html), which you will need to install locally before try-
ing the examples. Most Linux distributions come with a package for ZSI, such as python-zsi in
Ubuntu.

To get started, open a terminal and change to the sdk/bindings/glue/python/sample di-
rectory, which contains an example of a simple interactive shell able to control a VirtualBox
instance. The shell is written using the API layer, thereby hiding different implementation de-
tails, so it is actually an example of code shared among XPCOM, MSCOM and web services.
If you are interested in how to interact with the web services layer directly, have a look at

20n Mac OS X only the Python versions bundled with the OS are officially supported.
3See http://sourceforge.net/project/showfiles.php?group_id=78018.

http://pywebsvcs.sourceforge.net/zsi.html
http://sourceforge.net/project/showfiles.php?group_id=78018

2 Environment-specific notes

install/vboxapi/__init__.py which contains the glue layer for all target platforms (i.e. XP-
COM, MSCOM and web services).
To start the shell, run the following commands:

/opt/VirtualBox/vboxwebsrv -t 0 # start web service with object autocollection disabled
export VBOX_PROGRAM_PATH=/opt/VirtualBox # your VirtualBox installation directory
export VBOX_SDK_PATH=/home/youruser/vbox-sdk # where you’'ve extracted the SDK
./vboxshell.py -w

See chapter 4, The VirtualBox shell, page 31 for more details on the shell’s functionality. For
you, as a VirtualBox application developer, the vboxshell sample could be interesting as an exam-
ple of how to write code targeting both local and remote cases (COM/XPCOM and SOAP). The
common part of the shell is the same - the only difference is how it interacts with the invocation
layer. You can use the connect shell command to connect to remote VirtualBox servers; in this
case you can skip starting the local web server.

2.1.3 The object-oriented web service for PHP

VirtualBox also comes with object-oriented web service (OOWS) wrappers for PHP5. These
wrappers rely on the PHP SOAP Extension®, which can be installed by configuring PHP with
--enable-soap.

2.2 Using the raw web service with any language

The following examples show you how to use the raw web service, without the object-oriented
client-side code that was described in the previous chapter.

Due to the limitations of SOAP and WSDL outlined in chapter 2.2.3.1, Fundamental conven-
tions, page 12, keep the following notes in mind when reading the documentation in chapter 6,
Classes (interfaces), page 38 and chapter 7, Enumerations (enums), page 422:

1. Any COM method call becomes a plain function call in the raw web service, with the
object as an additional first parameter (before the “real” parameters listed in the docu-
mentation). So when the documentation says that the IVirtualBox interface supports
the createMachine() method (see IVirtualBox::createMachine()), the web service op-
eration is IVirtualBox_createMachine(...), and a managed object reference to an
IVirtualBox object must be passed as the first argument.

2. For attributes in interfaces, there will be at least one “get” function; there will also be a
“set” function, unless the attribute is “readonly”. The attribute name will be appended to
the “get” or “set” prefix, with a capitalized first letter. So, the “version” readonly attribute of
the IVirtualBox interface can be retrieved by calling IVirtualBox_getVersion(vbox),
with vbox being the VirtualBox object.

3. Whenever the API documentation says that a method (or an attribute getter) returns an
object, it will returned a managed object reference in the web service instead. As said
above, managed object references should be released if the web service client does not log
off again immediately!

2.2.1 Raw web service example for Java with Axis

Axis is an older web service toolkit created by the Apache foundation. If your distribution does
not have it installed, you can get a binary from http://axis.apache.org. The following examples
assume that you have Axis 1.4 installed.

4See https://www.php.net/soap.

10

http://axis.apache.org
https://www.php.net/soap

2 Environment-specific notes

The VirtualBox SDK ships with an example for Axis that, again, is called clienttest. java
and that imitates a few VBoxManage commands and sends them to the VirtualBox web service.
To try out the raw web service with Axis complete the following steps:

1. Create a working directory somewhere. Under your VirtualBox installation directory, find
the sdk/webservice/samples/java/axis/ directory and copy the file clienttest.java
to your working directory.

2. Open a terminal in your working directory. Execute the following command:

java org.apache.axis.wsdl.WSDL2Java /path/to/vboxwebService.wsdl

The vboxwebService.wsdl file should be located in the sdk/webservice/ directory.

If this fails, your Apache Axis may not be located on your system classpath, and you may
have to adjust the CLASSPATH environment variable. Something like this:

export CLASSPATH="/path-to-axis-1_4/lib/x*":$CLASSPATH

Use the directory where the Axis JAR files are located. Mind the quotes so that your shell
passes the “*“ character to the java executable without expanding. Alternatively, add a
corresponding -classpath argument to the “java” call above.

If the command executes successfully, you should see an “org” directory with subdirecto-
ries containing Java source files in your working directory. These classes represent the
interfaces that the VirtualBox web service offers, as described by the WSDL file.

This is the bit that makes using web services so attractive to client developers: if a lan-
guage’s toolkit understands WSDL, it can generate large amounts of support code auto-
matically. Clients can then easily use this support code and can be done with just a few
lines of code.

3. Next, compile the clienttest. java source:

javac clienttest.java

This should yield a “clienttest.class” file.

4. To start the VirtualBox web service, open a second terminal and change to the directory
where the VirtualBox executables are located. Then type:

./vboxwebsrv -v

The web service now waits for connections and will run until you press Ctrl+C in this
second terminal. The -v argument causes it to log all connections to the terminal. (See
chapter 1.4, Running the web service, page 4 for details on how to run the web service.)

5. Back in the original terminal where you compiled the Java source, run the resulting binary,
which will then connect to the web service:

java clienttest

The client sample will connect to the web service (on localhost, but the code could be
changed to connect remotely if the web service was running on a different machine) and
make a number of method calls. It will output the version number of your VirtualBox
installation and a list of all virtual machines that are currently registered (with a bit of
seemingly random data, which will be explained later).

11

2 Environment-specific notes

2.2.2 Raw web service example for Perl

We also ship a small sample for Perl. It uses the SOAP::Lite perl module to communicate with
the VirtualBox web service.

The sdk/bindings/webservice/perl/lib/ directory contains a pre-generated Perl module
that allows for communicating with the web service from Perl. You can generate such a module
yourself using the “stubmaker” tool that comes with SOAP::Lite, but since that tool is slow as
well as sometimes unreliable, we ship a working module with the SDK for your convenience.

Perform the following steps:

1. If SOAP::Lite is not yet installed on your system, you will need to install the package
first. On Debian-based systems, the package is called 1ibsoap-lite-perl; on Gentoo, it’s
dev-perl/SOAP-Lite.

2. Open a terminal in the sdk/bindings/webservice/perl/samples/ directory.

3. To start the VirtualBox web service, open a second terminal and change to the directory
where the VirtualBox executables are located. Then type:

./vboxwebsrv -v

The web service now waits for connections and will run until you press Ctrl+C in this
second terminal. The -v argument causes it to log all connections to the terminal. (See
chapter 1.4, Running the web service, page 4 for details on how to run the web service.)

4. In the first terminal with the Perl sample, run the clienttest.pl script:

perl -I ../lib clienttest.pl

2.2.3 Programming considerations for the raw web service

If you use the raw web service, you need to keep a number of things in mind, or you will sooner
or later run into issues that are not immediately obvious. By contrast, the object-oriented client-
side libraries described in chapter 2.1, Using the object-oriented web service (OOWS), page 7 take
care of these things automatically and thus greatly simplify using the web service.

2.2.3.1 Fundamental conventions

If you are familiar with other web services, you may find that the VirtualBox web service behaves
a bit differently to accommodate for the fact that the VirtualBox web service more or less maps
the VirtualBox Main COM API. The primary challenges in mapping the VirtualBox Main COM
API to the web service are as follows:

e Web services, as expressed by WSDL, are not object-oriented. Even worse, they are nor-
mally stateless (or, in web services terminology, “loosely coupled”). Web service operations
are entirely procedural, and one cannot normally make assumptions about the state of a
web service between function calls.

In particular, this normally means that you cannot work on objects in one method call that
were created by another call.

e By contrast, the VirtualBox Main API, being expressed in COM, is object-oriented and works
entirely on objects, which are grouped into public interfaces, which in turn have attributes
and methods associated with them.

For the VirtualBox web service, this results in three fundamental conventions:

12

2 Environment-specific notes

1. All function names in the VirtualBox web service consist of an interface name and a
method name, joined together by an underscore. This is because there are only functions
(“operations”) in WSDL, but no classes, interfaces, or methods.

2. All calls to the VirtualBox web service (except for logon, see below) take a managed object
reference as the first argument, representing the object upon which the underlying method
is invoked. (Managed object references are explained in detail below; see chapter 2.2.3.3,
Managed object references, page 14.)

So, when one would normally code, in the pseudo-code of an object-oriented language, to
invoke a method upon an object:

IMachine machine;
result = machine.getName();

In the VirtualBox web service, this looks something like this (again, pseudo-code):

IMachineRef machine;
result = IMachine_getName(machine);

3. To make the web service stateful, and objects persistent between method calls, the
VirtualBox web service introduces a session manager (by way of the IWebsessionManager
interface), which manages object references. Any client wishing to interact with the web
service must first log on to the session manager and in turn receives a managed object ref-
erence to an object that supports the IVirtualBox interface (the basic interface in the Main
API).

In other words, as opposed to other web services, the VirtualBox web service is both object-
oriented and stateful.

2.2.3.2 Example: A typical web service client session

A typical short web service session to retrieve the version number of the VirtualBox web service
(to be precise, the underlying Main API version number) looks like this:

1. A client logs on to the web service by calling IWebsessionManager::logon() with a valid
user name and password. See chapter 1.4.2, Authenticating at web service logon, page 5 for
details about how authentication works.

2. On the server side, vboxwebsrv creates a session, which persists until the client calls
IWebsessionManager::logoff() or the session times out after a configurable period of in-
activity (see chapter 1.4.1, Command line options of vboxwebsrv, page 4).

For the new session, the web service creates an instance of IVirtualBox. This interface is the
most central one in the Main API and allows access to all other interfaces, either through
attributes or method calls. For example, [VirtualBox contains a list of all virtual machines
that are currently registered (as they would be listed on the left side of the VirtualBox main
program).

The web service then creates a managed object reference for this instance of IVirtualBox
and returns it to the calling client, which receives it as the return value of the logon call.
Something like this:

string oVirtualBox;
oVirtualBox = webservice.IWebsessionManager_logon("user", "pass");

13

2 Environment-specific notes

(The managed object reference “oVirtualBox” is just a string consisting of digits and dashes.
However, it is a string with a meaning and will be checked by the web service. For details,
see below. As hinted above, IWebsessionManager::logon() is the only operation provided
by the web service which does not take a managed object reference as the first argument!)

3. The VirtualBox Main API documentation explains that the IVirtualBox interface has a
version attribute, which is a string. For each attribute, there is a “get” and a “set” method
in COM, which maps to the corresponding operations in the web service. So, to retrieve
the “version” attribute of this IVirtualBox object, the web service client does this:

string version;
version = webservice.IVirtualBox_getVersion(oVirtualBox);

print version;

And it will print “7.1.0”.

4. The web service client calls IWebsessionManager::logoff() with the VirtualBox managed
object reference. This will clean up all allocated resources.

2.2.3.3 Managed object references

To a web service client, a managed object reference looks like a string: two 64-bit hex numbers
separated by a dash. This string, however, represents a COM object that “lives” in the web service
process. The two 64-bit numbers encoded in the managed object reference represent a session
ID (which is the same for all objects in the same web service session, i.e. for all objects after one
logon) and a unique object ID within that session.

Managed object references are created in two situations:

1. When a client logs on, by calling IWebsessionManager::logon().

Upon logon, the websession manager creates one instance of IVirtualBox, which can be
used for directly performing calls to its methods, or used as a parameter for calling some
methods of IWebsessionManager. Creating Main API session objects is performed using
IWebsessionManager::getSessionObject().

(Technically, there is always only one IVirtualBox object, which is shared between all web-
sessions and clients, as it is a COM singleton. However, each session receives its own
managed object reference to it.)

2. Whenever a web service clients invokes an operation whose COM implementation creates
COM objects.

For example, IVirtualBox::createMachine() creates a new instance of IMachine; the COM
object returned by the COM method call is then wrapped into a managed object reference
by the web server, and this reference is returned to the web service client.

Internally, in the web service process, each managed object reference is simply a small data
structure, containing a COM pointer to the “real” COM object, the web session ID and the object
ID. This structure is allocated on creation and stored efficiently in hashes, so that the web service
can look up the COM object quickly whenever a web service client wishes to make a method call.
The random session ID also ensures that one web service client cannot intercept the objects of
another.

Managed object references are not destroyed automatically and must be released by explicitly
calling IManagedObjectRef::release(). This is important, as otherwise hundreds or thousands of
managed object references (and corresponding COM objects, which can consume much more
memory!) can pile up in the web service process and eventually cause it to deny service.

14

2 Environment-specific notes

To reiterate: The underlying COM object, which the reference points to, is only freed if the
managed object reference is released. It is therefore vital that web service clients properly clean
up after the managed object references that are returned to them.

When a web service client calls IWebsessionManager::logoff(), all managed object references
created during the session are automatically freed. For short-lived sessions that do not create a
lot of objects, logging off may therefore be sufficient, although it is certainly not “best practice”.

2.2.3.4 Some more detail about web service operation

SOAP messages Whenever a client makes a call to a web service, this involves a complicated
procedure internally. These calls are remote procedure calls. Each such procedure call typically
consists of two “message” being passed, where each message is a plain-text HTTP request with a
standard HTTP header and a special XML document following. This XML document encodes the
name of the procedure to call and the argument names and values passed to it.

To give you an idea of what such a message looks like, assuming that a web service provides
a procedure called “SayHello”, which takes a string “name” as an argument and returns “Hello”
with a space and that name appended, the request message could look like this:

<?xml version="1.0" encoding="UTF-8"?7>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:test="http://test/">
<SOAP-ENV:Body>
<test:SayHello>
<name>Peter</name>
</test:SayHello>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

A similar message — the “response” message — would be sent back from the web service to the
client, containing the return value “Hello Peter”.

Most programming languages provide automatic support to generate such messages whenever
code in that programming language makes such a request. In other words, these programming
languages allow for writing something like this (in pseudo-C++ code):

webServiceClass service("localhost", 18083); // server and port
string result = service.SayHello("Peter"); // invoke remote procedure

and would, for these two pseudo-lines, automatically perform these steps:

1. Prepare a connection to the web service running on port 18083 of “localhost”.

2. Generate a SOAP message similar to the above example for the SayHello () function of the
web service by encoding all arguments of the remote procedure call (which could involve
all kinds of type conversions and complex marshalling for arrays and structures).

3. Connect to the web service via HTTP and then send that message.
4. Wait for the web service to send a response message.

5. Decode that response message and put the return value of the remote procedure into the
“result” variable.

15

2 Environment-specific notes

Service descriptions in WSDL In the above explanations about SOAP, it wasn’t explained
how the programming language learns about how to translate function calls in its own syntax
into proper SOAP messages. In other words, the programming language needs to know what
operations the web service supports and what types of arguments are required for the operation’s
data in order to be able to properly serialize and deserialize the data to and from the web service.
For example, if a web service operation expects a number in “double” floating point format for a
particular parameter, the programming language cannot send it a string instead.

For this, the Web Service Definition Language (WSDL) was invented, another XML substandard
that describes exactly what operations the web service supports and, for each operation, which
parameters and types are needed with each request and response message. WSDL descriptions
can be incredibly verbose, and one of the few good things that can be said about this standard is
that it is indeed supported by most programming languages.

So, if it is said that a programming language “supports” web services, this typically means
that a programming language has support for parsing WSDL files and somehow integrating the
remote procedure calls into the native language syntax — for example, as shown in the Java
sample in chapter 2.2.1, Raw web service example for Java with Axis, page 10.

For details about how programming languages support web services, please refer to the docu-
mentation that comes with the individual language. Here are a few pointers:

1. For C++, among many others, the gSOAP toolkit is a good option. Parts of gSOAP are
also used in VirtualBox to implement the VirtualBox web service.

2. For Java, there are several implementations already described in this document (see chap-
ter 2.1.1, The object-oriented web service for JAX-WS, page 7 and chapter 2.2.1, Raw web
service example for Java with Axis, page 10).

3. Perl supports WSDL via the SOAP::Lite package. This in turn comes with a tool called
stubmaker.pl that allows you to turn any WSDL file into a Perl package that you can
import. (You can also import any WSDL file “live” by having it parsed every time the script
runs, but that can take a while.) You can then code (again, assuming the above example):

my $result = servicename->sayHello("Peter");

A sample that uses SOAP::Lite was described in chapter 2.2.2, Raw web service example for
Perl, page 12.

2.3 Using COM/XPCOM directly

If you do not require remote procedure calls such as those offered by the VirtualBox web ser-
vice, and if you know Python or C++ as well as COM, you might find it preferable to program
VirtualBox’s Main API directly via COM.

COM stands for “Component Object Model” and is a standard originally introduced by Mi-
crosoft in the 1990s for Microsoft Windows. It allows for organizing software in an object-
oriented way and across processes; code in one process may access objects that live in another
process.

COM has several advantages: it is language-neutral, meaning that even though all of
VirtualBox is internally written in C++, programs written in other languages can communicate
with it. COM also cleanly separates interface from implementation, so that external programs do
not need to know anything about the messy and complicated details of VirtualBox internals.

On a Windows host, all parts of VirtualBox will use the COM functionality that is native to
Windows. On other hosts (including Linux), VirtualBox comes with a built-in implementation
of XPCOM, as originally created by the Mozilla project, which we have enhanced to support
interprocess communication on a level comparable to Microsoft COM. Internally, VirtualBox has
an abstraction layer that allows the same VirtualBox code to work both with native COM as well
as our XPCOM implementation.

16

2 Environment-specific notes

2.3.1 Python COM API

On Windows, Python scripts can use COM and VirtualBox interfaces to control almost all aspects
of virtual machine execution. For example, you can use the following commands to instantiate
the VirtualBox object and start a VM:

vbox = win32com.client.Dispatch("VirtualBox.VirtualBox")
session = win32com.client.Dispatch("VirtualBox.Session")
mach = vbox.findMachine("uuid or name of machine to start")
progress = mach.launchVMProcess(session, "gui", "")
progress.waitForCompletion(-1)

Also, see sdk/bindings/glue/python/samples/vboxshell.py for more advanced usage
scenarious. However, unless you have specific requirements, we strongly recommend that you
use the generic glue layer described in the next section to access MS COM objects.

2.3.2 Common Python bindings layer

As different wrappers ultimately provide access to the same underlying API, and to simplify
porting and development of Python applications using the VirtualBox Main API, we developed
a common glue layer that abstracts out most platform-specific details from the application and
allows the developer to focus on application logic. The VirtualBox installer automatically sets up
this glue layer for the system default Python installation.

See chapter 2.3.2.1, Manual or subsequent setup, page 18 for details on how to set up the glue
layer if you want to use a different Python installation, or if the VirtualBox installer failed to
detect and set it up accordingly.

The minimum supported Python version is 2.6.

In this layer, the class VirtualBoxManager hides most platform-specific details. It can be used
to access both the local (COM) and the web service based API. The following code can be used
by an application to use the glue layer.

This code assumes vboxapi.py from VirtualBox distribution
being in PYTHONPATH, or installed system-wide
from vboxapi import VirtualBoxManager

This code initializes VirtualBox manager with default style
and parameters
virtualBoxManager = VirtualBoxManager(None, None)

Alternatively, one can be more verbose, and initialize

glue with web service backend, and provide authentication

information

virtualBoxManager = VirtualBoxManager("WEBSERVICE",
{’url’: http://myhost.com::18083/",
"user’:'me’,
"password’:’secret’})

We supply the VirtualBoxManager constructor with 2 arguments: style and parameters. Style
defines which bindings style to use (could be “MSCOM”, “XPCOM” or “WEBSERVICE”), and if set
to None defaults to usable platform bindings (MS COM on Windows, XPCOM on other platforms).
The second argument defines parameters, passed to the platform-specific module, as we do in
the second example, where we pass a username and password to be used to authenticate against
the web service.

After obtaining the VirtualBoxManager instance, one can perform operations on the IVirtu-
alBox class. For example, the following code will a start virtual machine by name or ID:

from vboxapi import VirtualBoxManager
mgr = VirtualBoxManager(None, None)

17

2 Environment-specific notes

vbox = mgr.getVirtualBox()
name = "Linux"
mach = vbox.findMachine(name)

session = mgr.getSessionObject(vbox)

progress = mach.launchVMProcess(session, "gui", "")
progress.waitForCompletion(-1)
mgr.closeMachineSession(session)

The following code will print all registered machines and their log folders:

from vboxapi import VirtualBoxManager
mgr = VirtualBoxManager(None, None)
vbox = mgr.getVirtualBox()

for m in mgr.getArray(vbox, ’'machines’):
print "Machine ’%s’ logs in '%s’" %(m.name, m.logFolder)

The code above demonstrates cross-platform access to array properties (certain limita-
tions prevent one from using vbox.machines to access a list of available virtual ma-
chines in the case of XPCOM), and a mechanism for uniform session creation and closure
(mgr.getSessionObject()).

2.3.2.1 Manual or subsequent setup

If you want to use the glue layer with a different Python installation or the installer failed to set
it up, then use these steps in a shell to install the necessary files:

cd VBOX_INSTALL_PATH/sdk/installer
python vboxapisetup.py install

Note: On Windows hosts, a Python distribution along with the win32api bindings
package need to be installed as a prerequisite.

2.3.3 C++ COM API

C++ is the language that VirtualBox itself is written in, so C++ is the most direct way to use
the Main API - but it is not necessarily the easiest, as using COM and XPCOM has its own set of
complications.

VirtualBox ships with sample programs that demonstrate how to use the Main API
to implement a number of tasks on your host platform. These samples can be found
in the sdk/bindings/xpcom/samples directory for Linux, Mac OS X and Solaris and
sdk/bindings/mscom/samples for Windows. The two samples are actually different, because
the one for Windows uses native COM, whereas the other uses our XPCOM implementation, as
described above.

Since COM and XPCOM are conceptually very similar but vary in the implementation details,
we have created a “glue” layer that shields COM client code from these differences. All VirtualBox
uses is this glue layer, so the same code written once works on both Windows hosts (with native
COM) as well as on other hosts (with our XPCOM implementation). It is recommended to always
use this glue code instead of using the COM and XPCOM APIs directly, as it is very easy to make
your code completely independent from the platform it is running on.

In order to encapsulate platform differences between Microsoft COM and XPCOM, the follow-
ing items should be kept in mind when using the glue layer:

18

2 Environment-specific notes

1. Attribute getters and setters. COM has the notion of “attributes” in interfaces, which
roughly compare to C++ member variables in classes. The difference is that for each
attribute declared in an interface, COM automatically provides a “get” method to return
the attribute’s value. Unless the attribute has been marked as “readonly”, a “set” attribute
is also provided.

To illustrate, the IVirtualBox interface has a “version” attribute, which is read-only and of
the “wstring” type (the standard string type in COM). As a result, you can call the “get”
method for this attribute to retrieve the version number of VirtualBox.

Unfortunately, the implementation differs between COM and XPCOM. Microsoft COM
names the “get” method like this: get_Attribute(), whereas XPCOM uses this syn-
tax: GetAttribute() (and accordingly for “set” methods). To hide these differences, the
VirtualBox glue code provides the COMGETTER (attrib) and COMSETTER(attrib) macros.
So, COMGETTER(version) () (note, two pairs of brackets) expands to get_Version() on
Windows and GetVersion() on other platforms.

2. Unicode conversions. While the rest of the modern world has pretty much settled on
encoding strings in UTF-8, COM, unfortunately, uses UCS-16 encoding. This requires a lot
of conversions, in particular between the VirtualBox Main API and the Qt GUI, which, like
the rest of Qt, likes to use UTF-8.

To facilitate these conversions, VirtualBox provides the com::Bstr and com::Utf8Str
classes, which support all kinds of conversions back and forth.

3. COM autopointers. Possibly the greatest pain of using COM - reference counting — is
alleviated by the ComPtr<> template provided by the ptr.h file in the glue layer.

2.3.4 Event queue processing

Both VirtualBox client programs and front-ends should periodically perform processing of the
main event queue, and do that on the application’s main thread. In the case of a typical GUI
Windows/Mac OS application this happens automatically in the GUI's dispatch loop. However,
for CLI only application, the appropriate actions have to be taken. For C++ applications, the
VirtualBox SDK provided glue method

int EventQueue::processEventQueue(uint32_t cMsTimeout)

can be used for both blocking and non-blocking operations. For the Python bindings, a com-
mon layer provides the method

VirtualBoxManager.waitForEvents(ms)

with similar semantics.

Things get somewhat more complicated for situations where an application using VirtualBox
cannot directly control the main event loop and the main event queue is separated from the event
queue of the programming library (for example in case of Qt on Unix platforms). In such a case,
the application developer is advised to use a platform/toolkit specific event injection mechanism
to force event queue checks either based on periodic timer events delivered to the main thread,
or by using custom platform messages to notify the main thread when events are available. See
the Qt (VirtualBox) front-end as an example.

19

2 Environment-specific notes

2.3.5 Visual Basic and Visual Basic Script (VBS) on Windows hosts

On Windows hosts, one can control some of the VirtualBox Main API functionality from VBS
scripts, and pretty much everything from Visual Basic programs.®

VBS is a scripting language available in any recent Windows environment. As an example, the
following VBS code will print the VirtualBox version:

set vb = CreateObject("VirtualBox.VirtualBox")
Wscript.Echo "VirtualBox version " & vb.version

See sdk/bindings/mscom/vbs/sample/vboxinfo.vbs for the complete sample.
Visual Basic is a popular high level language capable of accessing COM objects. The following
VB code will iterate over all available virtual machines:

Dim vb As VirtualBox.IVirtualBox

vb = CreateObject("VirtualBox.VirtualBox")

machines = ""

For Each m In vb.Machines
m=m&" " & m.Name

Next

See sdk/bindings/mscom/vb/sample/vboxinfo.vb for the complete sample.

2.3.6 C bindings to the VirtualBox API

The VirtualBox API was originally designed to be object oriented and leverages XPCOM or COM
as the middleware to natively map the API to C++. This means that in order to use the
VirtualBox API from C there needs to be some helper code to bridge the language differences
and reduce the differences between platforms.

2.3.6.1 Cross-platform C bindings to the VirtualBox API

Starting with version 4.3, VirtualBox offers C bindings which allows using the same C client
sources for all platforms, covering Windows, Linux, Mac OS X and Solaris. It is the preferred
way to write API clients, even though the old style is still available.

2.3.6.2 Getting started

The following sections describe how to use the VirtualBox API in a C program. The
necessary files are included in the SDK, in the directories sdk/bindings/c/include and
sdk/bindings/c/glue.

As part of the SDK, a sample program tstCAPIGlue.c is provided in the directory
sdk/bindings/c/samples which demonstrates using the C bindings to initialize the API, get
handles for VirtualBox and Session objects, make calls to list and start virtual machines, monitor
events, and uninitialize resources when done. The sample program is trying to illustrate all rel-
evant concepts, so it is a great source of detail information. Among many other generally useful
code sequences it contains a function which shows how to retrieve error details in C code if they
are available from the API call.

The sample program tstCAPIGLlue can be built using the provided Makefile and can be run
without arguments.

5The difference results from the way VBS treats COM safearrays, which are used to keep lists in the Main API. VBS
expects every array element to be a VARIANT, which is too strict a limitation for any high performance API. We may
lift this restriction for interface APIs in a future version, or alternatively provide conversion APIs.

20

2 Environment-specific notes

It uses the VBoxCAPIGlue library (source code is in directory sdk/bindings/c/glue, to be
used in your API client code) to open the C binding layer during runtime, which is preferred to
other means as it isolates the code which locates the necessary dynamic library, using a known
working way which works on all platforms. If you encounter problems with this glue code
in VBoxCAPIGlue.c, let the VirtualBox developers know, rather than inventing incompatible
solutions.

The following sections document the important concepts needed to correctly use the C bind-
ings, as it is vital for developing API client code which manages memory correctly, updates the
reference counters correctly, and avoids crashes and memory leaks. Often API clients need to
handle events, so the C API specifics are also described below.

2.3.6.3 VirtualBox C API initialization

Just like in C++, the API and the underlying middleware needs to be initialized before it can be
used. The VBoxCAPI_v7_1.h header file provides the interface to the C bindings, but you can
alternatively and more conveniently just include VBoxCAPIGLlue. h, as this avoids the VirtualBox
version dependent header file name and makes sure that the global variable g_pVBoxFuncs
contains a pointer to the structure which contains the helper function pointers. Here’s how to
initialize the C API:

#include "VBoxCAPIGlue.h"

IVirtualBoxClient *vboxclient = NULL;

~
*

VBoxCGlueInit() loads the necessary dynamic library, handles errors
(producing an error message hinting what went wrong) and gives you
the pointer to the function table (g_pVBoxFuncs).

Once you get the function table, then how and which functions
to use is explained below.

g_pVBoxFuncs->pfnClientInitialize does all the necessary startup
action and provides us with pointers to an IVirtualBoxClient instance.
It should be matched by a call to g_pVBoxFuncs->pfnClientUninitialize()
when done.

R S R S I R 3

*
~

if (VBoxCGluelInit())
{
fprintf(stderr, "s: FATAL: VBoxCGlueInit failed: %s\n",
argv[0], g_szVBoxErrMsg);
return EXIT_FAILURE;

}

g_pVBoxFuncs->pfnClientInitialize (NULL, &vboxclient);
if (!vboxclient)

fprintf(stderr, "%s: FATAL: could not get VirtualBoxClient reference\n",
argv[0])
return EXIT_FAILURE;

If vboxclient is still NULL this means the initializationi failed and the VirtualBox C API cannot
be used.

It is possible to write C applications using multiple threads which all use the VirtualBox API, as
long as you're initializing the C API in each thread which your application creates. This is done
with g_pVBoxFuncs->pfnClientThreadInitialize() and likewise before the thread is termi-
nated the API must be uninitialized with g_pVBoxFuncs->pfnClientThreadUninitialize().
You don’t have to use these functions in worker threads created by COM/XPCOM (which you
might utilize if your code uses active event handling), since everything is initialized correctly

21

2 Environment-specific notes

already. On Windows the C bindings create a marshaller which supports a wide range of COM
threading models, from Single-Threaded Apartments (STA) to Multithreaded Apartments (MTA),
so you don’t have to worry about these details unless you plan to use active event handlers. See
the sample code for how to get this to work reliably (in other words think twice if passive event
handling isn’t the better solution after you looked at the sample code).

2.3.6.4 C API attribute and method invocation

Method invocation is straightforward. It looks very similar to the C++ mechanism since it also
uses a macro which internally accesses the vtable and additionally needs to be passed a pointer
to the object as the first argument to serve as the this pointer.

Using the C bindings all method invocations return a numeric result code of type HRESULT
(with a few exceptions which normally are not relevant).

If an interface is specified as returning an object, a pointer to a pointer to the appropriate
object must be passed as the last argument. The method will then store an object pointer in that
location.

Likewise, attributes (properties) can be queried or set using method invocations, using spe-
cially named methods. For each attribute there exists a getter method, the name of which is
composed of get_ followed by the capitalized attribute name. Unless the attribute is read-only,
an analogous set_ method exists. Let’s apply these rules to get the IVirtualBox reference, an
ISession instance reference and read the IVirtualBox::revision attribute:

IVirtualBox *vbox NULL;
ISession *session = NULL;
HRESULT rc;

ULONG revision;

rc = IVirtualBoxClient_get_VirtualBox(vboxclient, &vbox);

if (FAILED(rc) || !'vbox)

{
PrintErrorInfo(argv[0@], "FATAL: could not get VirtualBox reference", rc);
return EXIT_FAILURE;

}

rc = IVirtualBoxClient_get_Session(vboxclient, &session);

if (FAILED(rc) || !session)

{
PrintErrorInfo(argv[0], "FATAL: could not get Session reference", rc);
return EXIT_FAILURE;

}

rc = IVirtualBox_get_Revision(vbox, &revision);
if (SUCCEEDED(rc))
{

printf("Revision: %u\n", revision);

}

The convenience macros for calling a method are named by prepending the method name with
the interface name (using _ as the separator).

So far only attribute getters were illustrated, but generic method calls are straightforward,
too:

IMachine xmachine = NULL;
BSTR vmname = ...;
/%
* Calling IMachine::findMachine(...)

x/
rc = IVirtualBox_FindMachine(vbox, vmname, &machine);

22

2 Environment-specific notes
As a more complicated example of a method invocation, let’s call IMachine::launchVMProcess
which returns an IProgress object. Note again that the method name is capitalized:
IProgress x*progress;

rc = IMachine_LaunchVMProcess (

machine, /*x this x/
session, /* arg 1 x/
sessionType, /* arg 2 x/
env, /* arg 3 x/
&progress /* 0ut x/

)i

All objects with their methods and attributes are documented in chapter 6, Classes (interfaces),
page 38.

2.3.6.5 String handling

When dealing with strings you have to be aware of a string’s encoding and ownership.

Internally, the API uses UTF-16 encoded strings. A set of conversion functions is provided to
convert other encodings to and from UTF-16. The type of a UTF-16 character is BSTR (or its
constant counterpart CBSTR), which is an array type, represented by a pointer to the start of the
zero-terminated string. There are functions for converting between UTF-8 and UTF-16 strings
available through g_pVBoxFuncs:

int (*pfnUtfl6ToUtf8) (CBSTR pwszString, char xxppszString);
int (xpfnUtf8ToUtf16) (const char *pszString, BSTR *ppwszString);

The ownership of a string determines who is responsible for releasing resources associated with
the string. Whenever the API creates a string (essentially for output parameters), ownership is
transferred to the caller. To avoid resource leaks, the caller should release resources once the
string is no longer needed. There are plenty of examples in the sample code.

2.3.6.6 Array handling

Arrays are handled somewhat similarly to strings, with the additional information of the number
of elements in the array. The exact details of string passing depends on the platform middle-
ware (COM/XPCOM), and therefore the C binding offers helper functions to gloss over these
differences.

Passing arrays as input parameters to API methods is usually done by the following sequence,
calling a hypothetical IArrayDemo_PassArray API method:

static const ULONG aElements[] = { 1, 2, 3, 4 };

ULONG cElements = sizeof(aElements) / sizeof(aElements[0]);

SAFEARRAY #psa = NULL;

psa = g_pVBoxFuncs->pfnSafeArrayCreateVector(VT_I4, 0, cElements);
g_pVBoxFuncs->pfnSafeArrayCopyInParamHelper(psa, aElements, sizeof(aElements));
IArrayDemo_PassArray(pThis, ComSafeArrayAsInParam(psa));
g-pVBoxFuncs->pfnSafeArrayDestroy(psa);

Likewise, getting arrays results from output parameters is done using helper functions which
manage memory allocations as part of their other functionality:

SAFEARRAY *psa = g_pVBoxFuncs->pfnSafeArrayOutParamAlloc();

ULONG x*pData;

ULONG cElements;

IArrayDemo_ReturnArray(pThis, ComSafeArrayAsOutTypeParam(psa, ULONG));
g_pVBoxFuncs->pfnSafeArrayCopyOutParamHelper((void *x)&pData, &cElements, VT_I4, psa);
g_pVBoxFuncs->pfnSafeArrayDestroy(psa);

23

2 Environment-specific notes

This covers the necessary functionality for all array element types except interface references.
These need special helpers to manage the reference counting correctly. The following code
snippet gets the list of VMs, and passes the first IMachine reference to another API function
(assuming that there is at least one element in the array, to simplify the example):

SAFEARRAY psa = g_pVBoxFuncs->pfnSafeArrayOutParamAlloc();
IMachine xxmachines = NULL;
ULONG machineCnt = 0;
ULONG 1i;
IVirtualBox_get_Machines(virtualBox, ComSafeArrayAsOutIfaceParam(machinesSA, IMachine x));
g_pVBoxFuncs->pfnSafeArrayCopyOutIfaceParamHelper((IUnknown *xx)&machines, &machineCnt, machinesSA);
g_pVBoxFuncs->pfnSafeArrayDestroy(machinesSA);
/* Now "machines" contains the IMachine references, and machineCnt the
* number of elements in the array. */

SAFEARRAY x*psa = g_pVBoxFuncs->pfnSafeArrayCreateVector(VT_IUNKNOWN, 0, 1);
g_pVBoxFuncs->pfnSafeArrayCopyInParamHelper(psa, (void x)&machines[0], sizeof(machines[0]));
IVirtualBox_GetMachineStates(ComSafeArrayAsInParam(psa), ...);

g_pVBoxFuncs->pfnSafeArrayDestroy(psa);
for (i = 0; i < machineCnt; ++i)

{
IMachine xmachine = machines[i];
IMachine_Release(machine);

}

free(machines);

Handling output parameters needs more special handling than input parameters, thus only for
the former are there special helpers while the latter is handled through the generic array support.

2.3.6.7 Event handling

The VirtualBox API offers two types of event handling, active and passive, and consequently
there is support for both with the C API binding. Active event handling (based on asynchronous
callback invocation for event delivery) is more difficult, as it requires the construction of valid
C++ objects in C, which is inherently platform and compiler dependent. Passive event handling
is much simpler, it relies on an event loop, fetching events and triggering the necessary handlers
explicitly in the API client code. Both approaches depend on an event loop to make sure that
events get delivered in a timely manner but otherwise differ in what else is required to implement
the respective event handler type.

The C API sample contains code for both event handling styles, and one has to modify the
appropriate #define to select which style is actually used by the compiled program. It allows a
good comparison between the two variants and the code sequences are probably worth reusing
without much change in other API clients with only minor adaptions.

Active event handling needs to ensure that the following helper function is called frequently
enough in the primary thread:

g_pVBoxFuncs->pfnProcessEventQueue(cTimeoutMS) ;

The actual event handler implementation is quite tedious, as it has to implement a complete
API interface. Especially on Windows it is a lot of work to implement the complicated IDispatch
interface, requiring loading COM type information and using it in the IDispatch method imple-
mentation. Overall this is quite tedious compared to passive event handling.

Passive event handling uses a similar event loop structure, which requires calling the following
function in a loop, and processing the returned event appropriately:

rc = IEventSource_GetEvent(pEventSource, pListener, cTimeoutMS, &pEvent);

After processing the event it needs to be marked as processed with the following method call:

rc = IEventSource_EventProcessed(pEventSource, pListener, pEvent);

24

2 Environment-specific notes

This is vital for vetoable events, as they would be stuck otherwise, waiting on whether the
veto comes or not. It does not do any harm for other event types, and in the end is cheaper than
checking if the event at hand is vetoable or not.

The general event handling concepts are described in the API specification (see chapter 3.4,
VirtualBox events, page 29), including how to aggregate multiple event sources for processing in
one event loop. As mentioned, the sample illustrates the practical aspects of how to use both
types of event handling, active and passive, from a C application. Additional hints are in the
comments documenting the helper methods in VBoxCAPI_v7_1.h. The code complexity of active
event handling (and its inherently platform/compiler specific aspects) should be motivation to
use passive event handling wherever possible.

2.3.6.8 C API uninitialization

Uninitialization is performed by g_pVBoxFuncs->pfnClientUninitialize(). If your program
can exit in more than one place, it is a good idea to install this function as an exit handler using
the C library function atexit() just after calling g_pVBoxFuncs->pfnClientInitialize() ,

e.g.

#include <stdlib.h>
#include <stdio.h>

* Make sure g_pVBoxFuncs->pfnClientUninitialize() is called at exit, no
* matter if we return from the initial call to main or call exit()

* somewhere else. Note that atexit registered functions are not

* called upon abnormal termination, i.e. when calling abort() or

* signal().

if (atexit(g_pVBoxFuncs->pfnClientUninitialize()) !'= 0) {
fprintf(stderr, "failed to register g_pVBoxFuncs->pfnClientUninitialize()\n");
exit (EXIT_FAILURE);

Another idea would be to write your own void myexit(int status) function, calling
g_pVBoxFuncs->pfnClientUninitialize() followed by the real exit(), and use it instead
of exit () throughout your program and at the end of main.

If you expect your program to be terminated by a signal (e.g. a user types CTRL-C sending
SIGINT) you might want to install a signal handler setting a flag noting that a signal was sent and
then calling g_pVBoxFuncs->pfnClientUninitialize() later on, not from the handler itself.

That said, if a client program forgets to call g_pVBoxFuncs->pfnClientUninitialize() be-
fore it terminates, there is a mechanism in place which will eventually release references held by
the client. On Windows it can take quite a while, on the order of 6-7 minutes.

2.3.6.9 Compiling and linking

A program using the C binding has to open the library during runtime using the help of the glue
code provided and as shown in the example tstCAPIGlue.c. Compilation and linking can be
achieved with a makefile fragment similar to:

Where is the SDK directory?

PATH_SDK =../../..

CAPI_INC = -I$(PATH_SDK)/bindings/c/include
ifdef ProgramFiles

PLATFORM_INC -I$(PATH_SDK) /bindings/mscom/include
PLATFORM_LIB $ (PATH_SDK) /bindings/mscom/1lib

else
PLATFORM_INC

-I$(PATH_SDK)/bindings/xpcom/include

25

2 Environment-specific notes

PLATFORM_LIB

$ (PATH_SDK) /bindings/xpcom/lib

endif
GLUE_DIR = $(PATH_SDK) /bindings/c/glue
GLUE_INC = -I$(GLUE_DIR)

Compile Glue Library
VBoxCAPIGlue.o: $(GLUE_DIR)/VBoxCAPIGlue.c
$(CC) $(CFLAGS) $(CAPI_INC) $(PLATFORM_INC) $(GLUE_INC) -0 $@ -C $<

Compile interface ID list
VirtualBox_i.o: $(PLATFORM_LIB)/VirtualBox_i.c
$(CC) $(CFLAGS) $(CAPI_INC) $(PLATFORM_INC) $(GLUE_INC) -0 $@ -c $<

Compile program code
program.o: program.c
$(CC) $(CFLAGS) $(CAPI_INC) $(PLATFORM_INC) $(GLUE_INC) -0 $@ -c $<

Link program.
program: program.o VBoxCAPICGlue.o VirtualBox_i.o
$(CC) -0 $@ $” -1dl -1pthread

2.3.6.10 Conversion of code using legacy C bindings

This section aims to make the task of converting code using the legacy C bindings to the new
style a breeze by following these key steps.

One necessary change is adjusting your Makefile to reflect the different include paths. As
shown in the makefile fragment above, there are now three relevant include directories. The
XPCOM include directory is still relevant for platforms where the XPCOM middleware is used
but most of its include files live elsewhere now so it’s good to have it last. Additionally the
VirtualBox_i.c file needs to be compiled and linked to the program since it contains the inter-
face IDs (IIDs) relevant for the VirtualBox API, making sure they are not replicated endlessly if
the code refers to them frequently.

The C API client code should include VBoxCAPIGlue.h instead of VBoxXPCOMCGlue.h or
VBoxCAPI_v7_1.h, as this makes sure the correct macros and internal translations are selected.

All API method calls (anything mentioning vtb1l) should be rewritten using the convenience
macros for calling methods, as these hide the internal details, are generally easier to use, and are
shorter to type. You should remove as many as possible (nsISupports =x) or similar typecasts,
as the new style should use the correct type in most places, increasing the type safety in case of
an error in the source code.

To gloss over the platform differences, API client code should no longer rely on XPCOM spe-
cific interface names such as nsISupports, nsIException and nsIEventQueue, and replace
them by the platform independent interface names IUnknown and IErrorInfo for the first two
respectively. Event queue handling should be replaced by using the platform independent way
described in chapter 2.3.6.7, Event handling, page 24.

Finally adjust the string and array handling to use the new helpers, as these make sure the
code works without changes with both COM and XPCOM, which are significantly different in
this area. The code should be double checked to see that it uses the correct way to manage
memory and is freeing it only after the last use.

2.3.6.11 Legacy C bindings to VirtualBox API for XPCOM

Note: This section applies to Linux, Mac OS X and Solaris hosts only and describes
deprecated use of the API from C.

Starting with version 2.2, VirtualBox offers C bindings for its API which works only on plat-
forms using XPCOM. Refer to the old SDK documentation (included in the SDK packages for
version 4.3.6 or earlier) since it still applies unchanged. The fundamental concepts are similar

26

2 Environment-specific notes

(but the syntactical details are quite different) to the newer cross-platform C bindings which
should be used for all new code, as the support for the old C bindings will go away in a major
release after version 4.3.

27

3 Basic VirtualBox concepts; some
examples

The following explains some basic VirtualBox concepts such as the VirtualBox object, sessions and
how virtual machines are manipulated and launched using the Main API. The coding examples
use a pseudo-code style closely related to the object-oriented web service (OOWS) for JAX-WS.
Depending on which environment you are using, you will need to adjust the examples.

3.1 Obtaining basic machine information. Reading attributes

Any program using the Main API will first need access to the global VirtualBox object (see
IVirtualBox), from which all other functionality of the API is derived. With the OOWS for JAX-
WS, this is returned from the IWebsessionManager::logon() call.

To enumerate virtual machines, one would look at the “machines” array attribute in the
VirtualBox object (see IVirtualBox::machines). This array contains all virtual machines currently
registered with the host, each of them being an instance of IMachine. From each such instance,
one can query additional information, such as the UUID, the name, memory, operating system
and more by looking at the attributes; see the attributes list in IMachine documentation.

As mentioned in the preceding chapters, depending on your programming environment, at-
tributes are mapped to corresponding “get” and (if the attribute is not read-only) “set” methods.
So when the documentation says that IMachine has a “name* attribute, this means you need to
code something like the following to get the machine’s name:

IMachine machine = ...;
String name = machine.getName();

Boolean attribute getters can sometimes be called isAttribute() due to JAX-WS naming
conventions.

3.2 Changing machine settings: Sessions

As described in the previous section, to read a machine’s attribute, one invokes the corresponding
“get” method. One would think that to change settings of a machine, it would suffice to call the
corresponding “set” method — for example, to set a VM’s memory to 1024 MB, one would call
setMemorySize(1024). Try that, and you will get an error: “The machine is not mutable.“

So unfortunately, things are not that easy. VirtualBox is a complicated environment in which
multiple processes compete for possibly the same resources, especially machine settings. As a
result, machines must be “locked” before they can either be modified or started. This is to prevent
multiple processes from making conflicting changes to a machine: it should, for example, not be
allowed to change the memory size of a virtual machine while it is running. (You can’t add more
memory to a real computer while it is running either, at least not to an ordinary PC.) Also, two
processes must not change settings at the same time, or start a machine at the same time.

These requirements are implemented in the Main API by way of “sessions”, in particu-
lar, the ISession interface. Each process which talks to VirtualBox needs its own instance
of ISession. In the web service, you can request the creation of such an object by calling
IWebsessionManager::getSessionObject(). More complex management tasks might need mul-
tiple instances of ISession, and each call returns a new one.

28

3 Basic VirtualBox concepts; some examples

This session object must then be used like a mutex semaphore in common programming envi-
ronments. Before you can change machine settings, you must write-lock the machine by calling
IMachine::lockMachine() with your process’s session object.

After the machine has been locked, the ISession::machine attribute contains a copy of the
original IMachine object upon which the session was opened, but this copy is “mutable”: you can
invoke “set” methods on it.

When done making the changes to the machine, you must call IMachine::saveSettings(), which
will copy the changes you have made from your “mutable” machine back to the real machine and
write them out to the machine settings XML file. This will make your changes permanent.

Finally, it is important to always wunlock the machine again, by calling
ISession::unlockMachine(). Otherwise, when the calling process exits, the machine will
be moved to the “aborted” state, which can lead to loss of data.

So, as an example, the sequence to change a machine’s memory to 1024 MB is something like
this:

IWebsessionManager mgr ...;
IVirtualBox vbox = mgr.logon(user, pass);

IMachine machine ..; // read-only machine
ISession session = mgr.getSessionObject();
machine.lockMachine(session, LockType.Write); // machine is now locked for writing

IMachine mutable = session.getMachine(); // obtain the mutable machine copy
mutable.setMemorySize(1024);
mutable.saveSettings(); // write settings to XML

session.unlockMachine();

3.3 Launching virtual machines

To launch a virtual machine, you call IMachine::launchVMProcess(). This instructs the
VirtualBox engine to start a new process containing the virtual machine. The host system sees
each virtual machine as a single process, even if the virtual machine has hundreds of its own
processes running inside it. (This new VM process in turn obtains a write lock on the machine,
as described above, to prevent conflicting changes from other processes; this is why opening
another session will fail while the VM is running.)

Starting a machine looks something like this:

IWebsessionManager mgr ...;
IVirtualBox vbox = mgr.logon(user, pass);

IMachine machine = ...; // read-only machine
ISession session = mgr.getSessionObject();
IProgress prog = machine.launchVMProcess(session,
"gui", // session type
") // possibly environment setting
prog.waitForCompletion(10000); // give the process 10 secs
if (prog.getResultCode() != 0) // check success
System.out.println("Cannot launch VM!")

The caller’s session object can then be used as a sort of remote control to the VM process that

was launched. It contains a “console” object (see ISession::console) with which the VM can be
paused, stopped, snapshotted or other things.

3.4 VirtualBox events

In VirtualBox, “events” provide a uniform mechanism to register for and consume specific events.
A VirtualBox client can register an “event listener” (represented by the IEventListener interface),

29

3 Basic VirtualBox concepts; some examples

which will then get notified by the server when an event (represented by the IEvent interface)
happens.

The IEvent interface is an abstract parent interface for all events that can occur in VirtualBox.
The actual events that the server sends out belong to one of the specific subclasses, for example
IMachineStateChangedEvent or IMediumChangedEvent.

As an example, the VirtualBox GUI waits for machine events so it can update its display when
the machine state changes or machine settings are modified, even if this happens in another
client. This is how the GUI can automatically refresh its display even if you manipulate a machine
from a different client such as VBoxManage.

To register an event listener to listen for events, you would use code similar to the following:

EventSource es = console.getEventSource();
IEventListener listener = es.createlListener();
VBoxEventType aTypes[] = (VBoxEventType.OnMachineStateChanged);
// list of event types to listen for
es.registerListener(listener, aTypes, false /* active */);
// register passive listener
IEvent ev = es.getEvent(listener, 1000);
// wait up to one second for event to happen
if (ev !'= null)

{
// downcast to specific event interface (in this case we have only registered
// for one type, otherwise IEvent::type would tell us)
IMachineStateChangedEvent mcse = IMachineStateChangedEvent.queryInterface(ev);
. // inspect and do something
es.eventProcessed(listener, ev);
}

es.unregisterListener(listener);

A graphical user interface application would most likely want to start its own thread to wait
for events and then process these in a loop.

The events mechanism was introduced with VirtualBox 3.3 and replaces various callback in-
terfaces which were called for each event in the interface. The callback mechanism was not
compatible with scripting languages, local Java bindings, and remote web services as they do
not support callbacks. The new mechanism with events and event listeners works with all of
these.

To simplify development of applications using events, the concept of an event aggregator was
introduced. Essentially it’s a mechanism to aggregate multiple event sources into one single event
source, and then work with this single aggregated event source instead of the original sources.
As an example, one can try out the VirtualBox Python shell’s recordDemo option which records
mouse and keyboard events using an event aggregator and displays them as separate event
sources. The VirtualBox Python shell (vboxshell.py) is shipped with the SDK. The recordDemo
code is essentially:

listener = console.eventSource.createlListener()
agg = console.eventSource.createAggregator([console.keyboard.eventSource, console.mouse.eventSource])
agg.registerListener(listener, [ctx[’'global’].constants.VBoxEventType_Any], False)
registered = True
end = time.time() + dur
while time.time() < end:
ev = agg.getEvent(listener, 1000)
processEent(ev)
agg.unregisterListener(listener)

Without using aggregators consumers would have to either poll on both sources or start mul-
tiple threads to block on those sources.

30

4 The VirtualBox shell

VirtualBox comes with an extensible shell which allows you to control your virtual machines
from the command line. It is also a non-trivial example of how to use the VirtualBox APIs from
Python for all three styles of the API (COM/XPCOM/WS).

You can easily extend this shell with your own commands. Simply create a subdirectory named
.config/VirtualBox/shexts in your home directory (.VirtualBox/shexts on Windows sys-
tems and Library/VirtualBox/shexts on macOS systems) and put a Python file implementing
your shell extension commands in this directory. This file must have an array named commands
which contains your command definitions:

commands = {

"cmdl’: [’'Command cmdl help’, cmdl],
"cmd2’: [’'Command cmd2 help’, cmd2]
}

For example, to create a command for creating hard drive images, the following code can be

used:

def createHdd(ctx,args):
Show some meaningful error message on wrong input
if (len(args) < 3):
print "usage: createHdd sizeM location type"
return 0

Get arguments

size = int(args([1])

loc = args[2]

if len(args) > 3:
format = args[3]

else:
And provide some meaningful defaults
format = "vdi"

Call VirtualBox API, using context’s fields

hdd = ctx['vb’'].createMedium(format, loc, ctx[’global’].constants.AccessMode ReadWrite, \

ctx['global’].constants.DeviceType_HardDisk)
Access constants using ctx[’global’].constants
progress = hdd.createBaseStorage(size, (ctx[’global’].constants.MediumVariant_Standard,
use standard progress bar mechanism
ctx[’'progressBar’] (progress)

Report errors

if not hdd.id:
print "cannot create disk (file %s exist?)" %(loc)
return 0

Give user some feedback on success too
print "created HDD with id: %s" %(hdd.id)

0 means continue execution, other values mean exit from the interpreter
return 0

commands = {

31

))

4 The VirtualBox shell

"myCreateHDD’: [’'Create virtual HDD, createHdd size location type’, createHdd]

}

Just store the above text in a file named createHdd (or any other meaningful name) in the
shexts directory located as described above and then start the VirtualBox shell or just issue the
reloadExts command if the shell is already running. Your new command will now be available.

32

5 Main API changes to support the
ARMG64 architecture

VirtualBox 7.1 introduces support for running virtual machines on hosts containing an ARM
CPU. Since VirtualBox has been designed and developed for virtualizing x86 hardware since
its inception adding support for ARM CPUs required a variety of changes to the Main API to
accommodate two different CPU architectures.

5.1 Overview of the Changes to the Main API

In order to support two different types of processor architecture in the VirtualBox Main API the
key abstraction was the addition of a new interface named IPlatform which contains the details
which relate to the operating environment of a VM. The IPlatform interface is distinct from the
VM itself (the IMachine interface), the VM management interfaces (IVirtualBox and IConsole),
as well as the global properties of the VM (the ISystemProperties interface). The contents of the
IPlatform interface can be broken down into three different categories:

e properties relating to the VM which are CPU architecture-neutral (IPlatformProperties)
e properties which are CPU architecture-specific (IPlatformX86 or IPlatformARM)

e attributes of the VM which are CPU architecture-neutral such as:

— the architecture of the VM (IPlatform::architecture)
— the type of chipset used by the VM (IPlatform::chipsetType)
- the type of IOMMU used by the VM (IPlatform::iommuType).

The IPlatform interface can be retrieved from the IMachine interface via the new
IMachine::platform attribute. The IPlatform::architecture attribute returns the architecture type
in a new enumeration named PlatformArchitecture. This enumeration value can be used to
determine which CPU-specific properties to query, for example:

IPlatform platform;
result = machine.getPlatform(platform);

PlatformArchitecture_T platformArch;
result = platform.getArchitecture(platformArch);
if (platformArch == x86)
IPlatformx86 platformX86;
result = platform.getX86(platformx86);
else if (platformArch == ARM)
IPlatformARM platformARM;
result = platform.getARM(platformARM);
else
error;

The value of the PlatformArchitecture enumeration can also be used when creating a new VM
using IVirtualBox::createMachine.

The CPU architecture-neutral properties in (IPlatformProperties) can be found in several
places:

33

5 Main API changes to support the ARM64 architecture

e They can be retrieved from the IPlatform::properties attribute.

e They can be retrieved from the ISystemProperties::platform attribute.

e They can
IVirtualBox:

retrieved from the
:getPlatformProperties method.

IVirtualBox

interface

using the new

The attributes and methods contained in IPlatformProperties were moved from the
ISystemProperties interface as they can vary based on the platform of the VM:

Original Attribute New Attribute

ISystemProperties:: rawModeSupported IPlatformProperties::rawModeSupported
ISystemProperties::exclusive HwVirt IPlatformProperties::exclusiveHwVirt
ISystemProperties::serialPortCount IPlatformProperties::serialPortCount
ISystemProperties::parallelPortCount IPlatformProperties::parallelPortCount
ISystemProperties::maxBootPosition IPlatformProperties::maxBootPosition
ISystemProperties::supportedParavirtProviders|[] IPlatformProperties::supportedParavirtProviders[]
ISystemProperties::supportedFirmwareTypes|[] IPlatformProperties::supportedFirmwareTypes|[]
ISystemProperties::supportedGuestOSTypes|] IPlatformProperties::supportedGuestOSTypes|]
ISystemProper- IPlatformProperties::supportedGraphicsControllerTypes[]
ties::supportedGraphicsControllerTypes|[]

ISystemProper- IPlatformProperties::supportedNetAdpPromiscModePols[]
ties::supportedNetAdpPromiscModePols[]

ISystemProperties::supportedNetworkAdapterTypes|[] IPlatformProperties::supportedNetworkAdapterTypes|[]
ISystemProperties::supportedUartTypes|[] IPlatformProperties::supportedUartTypes|[]
ISystemProperties::supportedUSBControllerTypes[] IPlatformProperties::supportedUSBControllerTypes[]
ISystemProperties::supportedAudioControllerTypes[] IPlatformProperties::supportedAudioControllerTypes[]
ISystemProperties::supportedBootDevices[] IPlatformProperties::supportedBootDevices|]
ISystemProperties::supportedStorageBuses|] IPlatformProperties::supportedStorageBuses|]
ISystemProper- IPlatformProperties::supportedStorageControllerTypes[]
ties::supportedStorageControllerTypes|[]

ISystemProperties::supportedChipsetTypes[] IPlatformProperties::supportedChipsetTypes[]
ISystemProperties::supportedlommuTypes[] IPlatformProperties::supportedlommuTypes|[]
ISystemProperties::supportedTpmTypes|[] IPlatformProperties::supportedTpmTypes[]

Original Method New Method
ISystemProperties::getDeviceTypesForStorageBus IPlatformProperties::getDeviceTypesForStorageBus
ISystemProper- IPlatformProperties::getMaxDevicesPerPortForStorageBus
ties::getMaxDevicesPerPortForStorageBus

ISystemProperties::getMaxInstancesOfStorageBus IPlatformProperties::getMaxInstancesOfStorageBus
ISystemProper- IPlatformProperties::getMaxInstancesOfUSBControllerTyp
ties::getMaxInstancesOfUSBControllerType

ISystemProperties::getMaxNetworkAdapters IPlatformProperties::getMaxNetworkAdapters
ISystemProperties::getMaxNetworkAdaptersOfType IPlatformProperties::getMaxNetworkAdaptersOfType
ISystemProperties::getMaxPortCountForStorageBus IPlatformProperties::getMaxPortCountForStorageBus
ISystemProperties::getMinPortCountForStorageBus IPlatformProperties::getMinPortCountForStorageBus
ISystemProperties::getStorageBusForControllerType IPlatformProperties::getStorageBusForControllerType
ISystemProper- IPlatformProperties::getStorageControllerHotplugCapable
ties::getStorageControllerHotplugCapable

ISystemProperties::getStorageControllerTypesForBus IPlatformProperties::getStorageControllerTypesForBus

The single attribute and all of the properties contained in the new IPlatformX86 interface were
moved from the IMachine interface as they are specific to the x86 CPU architecture:

Original Attribute

New Attribute

IMachine::HPETEnabled

IPlatformX86::HPETEnabled

34

¢)

5 Main API changes to support the ARM64 architecture

Original Method New Method
IMachine::getCPUIDLeaf IPlatformX86::getCPUIDLeaf
IMachine::getCPUIDLeafByOrdinal | IPlatformX86::getCPUIDLeafByOrdinal
IMachine::getCPUProperty [PlatformX86::getCPUProperty

IMachine::getHWVirtExProperty IPlatformX86::getHWVirtExProperty
IMachine::removeAllCPUIDLeaves | IPlatformX86::removeAllCPUIDLeaves

IMachine::removeCPUIDLeaf IPlatformX86::removeCPUIDLeaf
IMachine::setCPUIDLeaf IPlatformX86::setCPUIDLeaf
IMachine::setCPUProperty IPlatformX86::setCPUProperty

IMachine::setHWVirtExProperty IPlatformX86::setHWVirtExProperty

An itemized breakdown of the changes made to the Main API for ARM64 support is described
below.

5.1.1 Changes to Classes (Interfaces)
5.1.1.1 New Classes (Interfaces) Added

IPlatform

An umbrella-like interface containing a collection of properties and attributes of the soft-
ware environment of the VM.

IPlatformX86

An interface containing the x86-specific properties of the software environment of the VM.

IPlatformARM

An interface containing the ARM-specific properties of the software environment of the
VM.

IPlatformProperties

An interface containing the properties specific to the platform of the VM.

IHostX86

An interface which provides further classification of the x86-specific properties of the phys-
ical host machine.

5.1.1.2 Classes (Interfaces) Renamed

Original Class Name | New Class Name
IBIOSSettings IFirmwareSettings

The IBIOSSettings interface has been renamed to the more platform-neutral IFirmwareSet-

tings.

5.1.1.3 New Methods Added to Classes (Interfaces)

IPlatformProperties IVirtualBox::getPlatformProperties

The new IVirtualBox::getPlatformProperties method returns an IPlatformProperties object
which contains the platform-specific properties of a VM as described above.

35

5 Main API changes to support the ARM64 architecture

5.1.1.4 New Attributes Added to Classes (Interfaces)

IPlatformProperties ISystemProperties::platform

The ISystemProperties interface gets a new platform attribute which returns an IPlatform-
Properties object which contains the platform-specific properties of a VM as described
above.

FirmwareType IFirmwareSettings::firmwareType

The new IFirmwareSettings interface (renamed from IBIOSSettings) gets a new firmware-
Type attribute which returns a FirmwareType enumeration which contains the VM’s
firmware type.

PlatformArchitecture IHost::architecture

The IHost interface gets a new architecture attribute which returns a PlatformArchitecture
enumeration which contains the platform’s architecture.

[HostX86 [Host::x86

The IHost interface gets a new x86 attribute which returns an IHostX86 object which con-
tains the x86-specific properties of the physical host machine.

IPlatform IMachine::platform

The IMachine interface gets a new platform attribute which returns an IPlatform object
which contains the properties related to the platform of the VM.

IFirmwareSettings IMachine::firmwareSettings

The IMachine interface gets a new firmwareSettings attribute which returns an IFirmWare-
Settings object which contains the properties related to the platform of the VM.

5.1.1.5 Class (Interface) Attribute Changes

Original Class Name New Class Name

BIOSBootMenuMode
IBIOSSettings::bootMenuMode

FirmwareBootMenuMode IFirmwareSettings::bootMenuModg¢

n

The IBIOSSettings::bootMenuMode attribute has been moved to the new IFirmwareSettings
interface and now returns the firmware boot menu mode in the new FirmwareBootMenuMode
enumeration.

Original Class Name New Class Name
unsigned long ISerialPort::I0Base | unsigned long ISerialPort::I0Address

The ISerialPort::IOBase attribute has been renamed to ISerialPort::IOAddress.

5.1.2 Changes to Enumerations
5.1.2.1 New Enumerations Added

PlatformArchitecture

The new PlatformArchitecture enumeration contains the CPU architecture type of the VM.

36

5 Main API changes to support the ARM64 architecture

5.1.2.2 New Enumerations Values
e CPUArchitecture

- ARMvS8 32
- ARMv8_64

The CPUArchitecture enumeration gets two new additions corresponding to 32-bit and 64-
bit ARMv8 CPUs respectively.

e AudioControllerType
— VirtioSound
The AudioControllerType enumeration gets a new value named VirtioSound.
e ChipsetType
— ARMv8Virtual

The ChipsetType enumeration gets a new value named ARMv8Virtual.

5.1.2.3 Enumerations Renamed

Original Enumeration Name | New Enumeration Name
CPUPropertyType CPUPropertyTypeX86

The CPUPropertyType enumeration has been renamed to CPUPropertyTypeX86.

Original Enumeration Name | New Enumeration Name
BIOSBootMenuMode FirmwareBootMenuMode

The BIOSBootMenuMode enumeration has been renamed to FirmwareBootMenuMode.

37

6 Classes (interfaces)

6.1 IAdditionsFacility

Note: With the web service, this interface is mapped to a structure. Attributes that
return this interface will not return an object, but a complete structure containing the
attributes listed below as structure members.

Structure representing a Guest Additions facility.

6.1.1 Attributes
6.1.1.1 classType (read-only)

AdditionsFacilityClass IAdditionsFacility::classType

The class this facility is part of.

6.1.1.2 lastUpdated (read-only)

long long IAdditionsFacility::lastUpdated

Timestamp of the last status update, in milliseconds since 1970-01-01 UTC.

6.1.1.3 name (read-only)

wstring IAdditionsFacility::name

The facility’s friendly name.

6.1.1.4 status (read-only)

AdditionsFacilityStatus IAdditionsFacility::status

The current status.

6.1.1.5 type (read-only)
AdditionsFacilityType IAdditionsFacility::type

The facility’s type ID.

6.2 IAdditionsStateChangedEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

Notification when a Guest Additions property changes. Interested callees should query IGuest
attributes to find out what has changed.

38

6 Classes (interfaces)

6.2.1 Attributes
6.2.1.1 midlDoesNotLikeEmptylnterfaces (read-only)

boolean IAdditionsStateChangedEvent::midlDoesNotLikeEmptyInterfaces

6.3 IAppliance

Represents a platform-independent appliance in OVF format. An instance of this is returned by
IVirtualBox::createAppliance(), which can then be used to import and export virtual machines
within an appliance with VirtualBox.

The OVF standard suggests two different physical file formats:

1.

If the appliance is distributed as a set of files, there must be at least one XML descriptor file
that conforms to the OVF standard and carries an .ovf file extension. If this descriptor file
references other files such as disk images, as OVF appliances typically do, those additional
files must be in the same directory as the descriptor file.

If the appliance is distributed as a single file, it must be in TAR format and have the . ova file
extension. This TAR file must then contain at least the OVF descriptor files and optionally
other files.

At this time, VirtualBox does not not yet support the packed (TAR) variant; support will be
added with a later version.

Importing an OVF appliance into VirtualBox as instances of IMachine involves the following
sequence of API calls:

1.
2.

Call IvVirtualBox::createAppliance(). This will create an empty IAppliance object.

On the new object, call read() with the full path of the OVF file you would like to import.
So long as this file is syntactically valid, this will succeed and fill the appliance object with
the parsed data from the OVF file.

Next, call interpret(), which analyzes the OVF data and sets up the contents of the
IAppliance attributes accordingly. These can be inspected by a VirtualBox front-end
such as the GUI, and the suggestions can be displayed to the user. In particular, the
virtualSystemDescriptions[] array contains instances of IVirtualSystemDescription which
represent the virtual systems (machines) in the OVF, which in turn describe the virtual
hardware prescribed by the OVF (network and hardware adapters, virtual disk images,
memory size and so on). The GUI can then give the user the option to confirm and/or
change these suggestions.

If desired, call IVirtualSystemDescription::setFinalValues() for each virtual system (ma-
chine) to override the suggestions made by the interpret() routine.

Finally, call importMachines() to create virtual machines in VirtualBox as instances of
IMachine that match the information in the virtual system descriptions. After this call
succeeded, the UUIDs of the machines created can be found in the machines[] array at-
tribute.

Exporting VirtualBox machines into an OVF appliance involves the following steps:

1.

As with importing, first call IVirtualBox::createAppliance() to create an empty IAppliance
object.

. For each machine you would like to export, call IMachine::exportTo() with the IAppliance

object you just created. Each such call creates one instance of IVirtualSystemDescription
inside the appliance.

39

6 Classes (interfaces)
3. If desired, call IVirtualSystemDescription::setFinalValues() for each virtual system (ma-
chine) to override the suggestions made by the IMachine::exportTo() routine.

4. Finally, call write() with a path specification to have the OVF file written.

6.3.1 Attributes
6.3.1.1 path (read-only)

wstring IAppliance::path

Path to the main file of the OVF appliance, which is either the .ovf or the .ova file passed to
read() (for import) or write() (for export). This attribute is empty until one of these methods
has been called.

6.3.1.2 disks (read-only)

wstring IAppliance::disks[]

Array of virtual disk definitions. One such description exists for each disk definition in the
OVF; each string array item represents one such piece of disk information, with the information
fields separated by tab (\\t) characters.

The caller should be prepared for additional fields being appended to this string in future
versions of VirtualBox and therefore check for the number of tabs in the strings returned.

In the current version, the following eight fields are returned per string in the array:

1. Disk ID (unique string identifier given to disk)
2. Capacity (unsigned integer indicating the maximum capacity of the disk)

3. Populated size (optional unsigned integer indicating the current size of the disk; can be
approximate; -1 if unspecified)

4. Format (string identifying the disk format, typically
“http://www.vmware.com/specifications/vmdk.html#sparse”)

5. Reference (where to find the disk image, typically a file name; if empty, then the disk
should be created on import)

6. Image size (optional unsigned integer indicating the size of the image, which need not
necessarily be the same as the values specified above, since the image may be compressed
or sparse; -1 if not specified)

7. Chunk size (optional unsigned integer if the image is split into chunks; presently unsup-
ported and always -1)

8. Compression (optional string equaling “gzip” if the image is gzip-compressed)
6.3.1.3 virtualSystemDescriptions (read-only)
IVirtualSystemDescription IAppliance::virtualSystemDescriptions|[]

Array of virtual system descriptions. One such description is created for each virtual sys-
tem (machine) found in the OVF. This array is empty until either interpret() (for import) or
IMachine::exportTo() (for export) has been called.

40

6 Classes (interfaces)

6.3.1.4 machines (read-only)

wstring IAppliance::machines|[]

Contains the UUIDs of the machines created from the information in this appliances. This is
only relevant for the import case, and will only contain data after a call to importMachines()
succeeded.

6.3.1.5 certificate (read-only)

ICertificate IAppliance::certificate

The X.509 signing certificate, if the imported OVF was signed, null if not signed. This is
available after calling read().

6.3.2 addPasswords

void IAppliance::addPasswords (
[in] wstring identifiers[],
[in] wstring passwords[])
identifiers List of identifiers.
passwords List of matching passwords.

Adds a list of passwords required to import or export encrypted virtual machines.

6.3.3 createVFSExplorer

IVFSExplorer IAppliance::createVFSExplorer(
[in] wstring URI)

URI The URI describing the file system to use.

Returns a IVFSExplorer object for the given URI.

6.3.4 createVirtualSystemDescriptions

unsigned long IAppliance::createVirtualSystemDescriptions(
[in] unsigned long requested)

requested Requested number of new virtual system description objects

Creates a number of IVirtualSystemDescription objects and store them in the
virtualSystemDescriptions[] array.

6.3.5 getMediumldsForPasswordid

uuid[] IAppliance::getMediumIdsForPasswordId (
[in] wstring passwordId)

passwordld The password identifier to get the medium identifiers for.

Returns a list of medium identifiers which use the given password identifier.

41

6 Classes (interfaces)

6.3.6 getPasswordlds

wstring[] IAppliance::getPasswordIds()

Returns a list of password identifiers which must be supplied to import or export encrypted
virtual machines.

6.3.7 getWarnings

wstring[] IAppliance::getWarnings()

Returns textual warnings which occurred during execution of interpret().

6.3.8 importMachines

IProgress IAppliance::importMachines(
[in] ImportOptions options[])

options Options for the importing operation.

Imports the appliance into VirtualBox by creating instances of IMachine and other interfaces
that match the information contained in the appliance as closely as possible, as represented by
the import instructions in the virtualSystemDescriptions[] array.

Calling this method is the final step of importing an appliance into VirtualBox; see IAppliance
for an overview.

Since importing the appliance will most probably involve copying and converting disk images,
which can take a long time, this method operates asynchronously and returns an IProgress object
to allow the caller to monitor the progress.

After the import succeeded, the UUIDs of the IMachine instances created can be retrieved from
the machines[] array attribute.

6.3.9 interpret

void IAppliance::interpret()

Interprets the OVF data that was read when the appliance was constructed. After calling this
method, one can inspect the virtualSystemDescriptions[] array attribute, which will then contain
one IVirtualSystemDescription for each virtual machine found in the appliance.

Calling this method is the second step of importing an appliance into VirtualBox; see
IAppliance for an overview.

After calling this method, one should call getWarnings() to find out if problems were encoun-
tered during the processing which might later lead to errors.

6.3.10 read

IProgress IAppliance::read(
[in] wstring file)

file Name of appliance file to open (either with an .ovf or .ova extension, depending on
whether the appliance is distributed as a set of files or as a single file, respectively).

Reads an OVF file into the appliance object.

This method succeeds if the OVF is syntactically valid and, by itself, without errors. The mere
fact that this method returns successfully does not mean that VirtualBox supports all features
requested by the appliance; this can only be examined after a call to interpret().

42

6 Classes (interfaces)

6.3.11 write

IProgress IAppliance::write(
[in] wstring format,
[in] ExportOptions options|[],
[in] wstring path)

format Output format, as a string. Currently supported formats are “ovf-0.9”, “ovf-1.0”, “ovf-
2.0” and “opc-1.0”; future versions of VirtualBox may support additional formats. The
“opc-1.0” format is for creating tarballs for the Oracle Public Cloud.

options Options for the exporting operation.

path Name of appliance file to create. There are certain restrictions with regard to the file name
suffix. If the format parameter is “opc-1.0” a .tar.gz suffix is required. Otherwise the
suffix must either be .ovf or .ova, depending on whether the appliance is distributed as a
set of files or as a single file, respectively.

Writes the contents of the appliance exports into a new OVF file.

Calling this method is the final step of exporting an appliance from VirtualBox; see IAppliance
for an overview.

Since exporting the appliance will most probably involve copying and converting disk images,
which can take a long time, this method operates asynchronously and returns an IProgress object
to allow the caller to monitor the progress.

6.4 lAudioAdapter

The TAudioAdapter interface represents the virtual audio adapter of the virtual machine. Used
in TAudioSettings::adapter.

6.4.1 Attributes
6.4.1.1 enabled (read/write)

boolean IAudioAdapter::enabled
Flag whether the audio adapter is present in the guest system. If disabled, the virtual guest

hardware will not contain any audio adapter. Can only be changed when the VM is not running.

6.4.1.2 enabledin (read/write)

boolean IAudioAdapter::enabledIn
Flag whether the audio adapter is enabled for audio input. Only relevant if the adapter is
enabled.

6.4.1.3 enabledOut (read/write)

boolean IAudioAdapter::enabledOut
Flag whether the audio adapter is enabled for audio output. Only relevant if the adapter is
enabled.

6.4.1.4 audioController (read/write)

AudioControllerType IAudioAdapter::audioController

The emulated audio controller.

43

6 Classes (interfaces)

6.4.1.5 audioCodec (read/write)

AudioCodecType IAudioAdapter::audioCodec

The exact variant of audio codec hardware presented to the guest. For HDA and SB16, only
one variant is available, but for AC’97, there are several.

6.4.1.6 audioDriver (read/write)
AudioDriverType IAudioAdapter::audioDriver
Audio driver the adapter is connected to. This setting can only be changed when the VM is not

running.

6.4.1.7 propertiesList (read-only)

wstring IAudioAdapter::propertiesList[]

Array of names of tunable properties, which can be supported by audio driver.

6.4.2 getProperty

wstring IAudioAdapter::getProperty/(
[in] wstring key)

key Name of the key to get.

Returns an audio specific property string.
If the requested data key does not exist, this function will succeed and return an empty string
in the value argument.

6.4.3 setProperty

void IAudioAdapter::setProperty/(
[in] wstring key,
[in] wstring value)
key Name of the key to set.
value Value to assign to the key.

Sets an audio specific property string.
If you pass null or empty string as a key value, the given key will be deleted.

6.5 |AudioAdapterChangedEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

Notification when a property of the audio adapter changes. Interested callees should use
IAudioAdapter methods and attributes to find out what has changed.

44

6 Classes (interfaces)

6.5.1 Attributes
6.5.1.1 audioAdapter (read-only)
TAudioAdapter IAudioAdapterChangedEvent::audioAdapter

Audio adapter that is subject to change.

6.6 IAudioSettings

The TAudioSettings interface represents the audio settings for a virtual machine.

6.6.1 Attributes
6.6.1.1 adapter (read-only)
TAudioAdapter IAudioSettings::adapter

Associated audio adapter, always present.

6.6.2 getHostAudioDevice

IHostAudioDevice IAudioSettings::getHostAudioDevice(
[in] AudioDirection usage)

usage Usage to retrieve audio device for.

Returns the machine’s current host audio device for the specified usage.
If this method fails, the following error codes may be reported:

e E_NOTIMPL: This method is not implemented yet.

6.6.3 setHostAudioDevice

void TAudioSettings::setHostAudioDevice(
[in] IHostAudioDevice device,
[in] AudioDirection usage)

device Sets the host audio device for the specified usage.
usage Usage to set audio device for.

Sets the machine’s current host audio device for the specified usage.
If this method fails, the following error codes may be reported:

e E_NOTIMPL: This method is not implemented yet.

6.7 IBandwidthControl

Controls the bandwidth groups of one machine used to cap I/O done by a VM. This includes
network and disk I/0.

6.7.1 Attributes
6.7.1.1 numGroups (read-only)
unsigned long IBandwidthControl::numGroups

The current number of existing bandwidth groups managed.

45

6 Classes (interfaces)

6.7.2 createBandwidthGroup

void IBandwidthControl::createBandwidthGroup(
[in] wstring name,
[in] BandwidthGroupType type,
[in] long long maxBytesPerSec)

name Name of the bandwidth group.
type The type of the bandwidth group (network or disk).

maxBytesPerSec The maximum number of bytes which can be transfered by all entities at-
tached to this group during one second.

Creates a new bandwidth group.

6.7.3 deleteBandwidthGroup

void IBandwidthControl::deleteBandwidthGroup(
[in] wstring name)

name Name of the bandwidth group to delete.

Deletes a new bandwidth group.

6.7.4 getAliIBandwidthGroups

IBandwidthGroup[] IBandwidthControl::getAllBandwidthGroups()

Get all managed bandwidth groups.

6.7.5 getBandwidthGroup

IBandwidthGroup IBandwidthControl::getBandwidthGroup(
[in] wstring name)

name Name of the bandwidth group to get.

Get a bandwidth group by name.

6.8 IBandwidthGroup

Represents one bandwidth group.

6.8.1 Attributes
6.8.1.1 name (read-only)

wstring IBandwidthGroup::name

Name of the group.

6.8.1.2 type (read-only)

BandwidthGroupType IBandwidthGroup::type

Type of the group.

46

6 Classes (interfaces)

6.8.1.3 reference (read-only)

unsigned long IBandwidthGroup::reference

How many devices/medium attachments use this group.

6.8.1.4 maxBytesPerSec (read/write)

long long IBandwidthGroup::maxBytesPerSec

The maximum number of bytes which can be transfered by all entities attached to this group
during one second.

6.9 IBandwidthGroupChangedEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

Notification when one of the bandwidth groups changed

6.9.1 Attributes
6.9.1.1 bandwidthGroup (read-only)

IBandwidthGroup IBandwidthGroupChangedEvent: :bandwidthGroup

The changed bandwidth group.

6.10 IBooleanFormValue (IFormValue)

Note: This interface extends [FormValue and therefore supports all its methods and
attributes as well.

6.10.1 getSelected

boolean IBooleanFormValue::getSelected()

6.10.2 setSelected

IProgress IBooleanFormValue::setSelected(
[in] boolean selected)

selected

6.11 ICPUChangedEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

Notification when a CPU changes.

47

6 Classes (interfaces)

6.11.1 Attributes
6.11.1.1 CPU (read-only)

unsigned long ICPUChangedEvent::CPU

The CPU which changed.

6.11.1.2 add (read-only)

boolean ICPUChangedEvent: :add

Flag whether the CPU was added or removed.

6.12 ICPUExecutionCapChangedEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

Notification when the CPU execution cap changes.

6.12.1 Attributes
6.12.1.1 executionCap (read-only)

unsigned long ICPUExecutionCapChangedEvent::executionCap

The new CPU execution cap value. (1-100)

6.13 ICPUProfile

CPU profile. Immutable.

6.13.1 Attributes
6.13.1.1 name (read-only)

wstring ICPUProfile::name
The name.
6.13.1.2 fullName (read-only)
wstring ICPUProfile::fullName
The full name.
6.13.1.3 architecture (read-only)
CPUArchitecture ICPUProfile::architecture

The CPU architecture.

48

6 Classes (interfaces)

6.14 ICanShowWindowEvent (IVetoEvent)

Note: This interface extends IVetoEvent and therefore supports all its methods and
attributes as well.

Notification when a call to IMachine::canShowConsoleWindow() is made by a front-end to
check if a subsequent call to IMachine::showConsoleWindow() can succeed.

The callee should give an answer appropriate to the current machine state using event veto.
This answer must remain valid at least until the next machine state change.

6.14.1 Attributes
6.14.1.1 midlDoesNotLikeEmptyinterfaces (read-only)

boolean ICanShowWindowEvent::midlDoesNotLikeEmptyInterfaces

6.15 ICertificate

X.509 certificate details.

6.15.1 Attributes
6.15.1.1 versionNumber (read-only)

CertificateVersion ICertificate::versionNumber

Certificate version number.

6.15.1.2 serialNumber (read-only)

wstring ICertificate::serialNumber
Certificate serial number.
6.15.1.3 signatureAlgorithmOID (read-only)
wstring ICertificate::signatureAlgorithm0QID
The dotted OID of the signature algorithm.
6.15.1.4 signatureAlgorithmName (read-only)
wstring ICertificate::signatureAlgorithmName

The signature algorithm name if known (if known).

6.15.1.5 issuerName (read-only)

wstring ICertificate::issuerName[]

Issuer name. Each member of the array is on the format COMPONENT=NAME, e.g. “C=DE”,
“ST=Example”, “L=For Instance”, “O=Beispiel GmbH”, “CN=beispiel.example.org”.

49

6 Classes (interfaces)

6.15.1.6 subjectName (read-only)
wstring ICertificate::subjectName[]

Subject name. Same format as issuerName.

6.15.1.7 friendlyName (read-only)
wstring ICertificate::friendlyName

Friendly subject name or similar.

6.15.1.8 validityPeriodNotBefore (read-only)
wstring ICertificate::validityPeriodNotBefore

Certificate not valid before ISO timestamp.

6.15.1.9 validityPeriodNotAfter (read-only)

wstring ICertificate::validityPeriodNotAfter

Certificate not valid after ISO timestamp.

6.15.1.10 publicKeyAlgorithmOID (read-only)
wstring ICertificate::publicKeyAlgorithmOID

The dotted OID of the public key algorithm.

6.15.1.11 publicKeyAlgorithm (read-only)
wstring ICertificate::publicKeyAlgorithm

The public key algorithm name (if known).

6.15.1.12 subjectPublicKey (read-only)

octet ICertificate::subjectPublicKey][]

The raw public key bytes.

6.15.1.13 issuerUniqueldentifier (read-only)
wstring ICertificate::issuerUniqueIdentifier

Unique identifier of the issuer (empty string if not present).

6.15.1.14 subjectUniqueldentifier (read-only)
wstring ICertificate::subjectUniqueldentifier

Unique identifier of this certificate (empty string if not present).

6.15.1.15 certificateAuthority (read-only)

boolean ICertificate::certificateAuthority

Whether this certificate is a certificate authority. Will return E_FAIL if this attribute is not
present.

50

6 Classes (interfaces)

6.15.1.16 keyUsage (read-only)
unsigned long ICertificate::keyUsage

Key usage mask. Will return O if not present.

6.15.1.17 extendedKeyUsage (read-only)
wstring ICertificate::extendedKeyUsagel]

Array of dotted extended key usage OIDs. Empty array if not present.

6.15.1.18 rawCertData (read-only)

octet ICertificate::rawCertDatal]

The raw certificate bytes.

6.15.1.19 selfSigned (read-only)

boolean ICertificate::selfSigned

Set if self signed certificate.

6.15.1.20 trusted (read-only)

boolean ICertificate::trusted

Set if the certificate is trusted (by the parent object).

6.15.1.21 expired (read-only)

boolean ICertificate::expired

Set if the certificate has expired (relevant to the parent object)/

6.15.2 isCurrentlyExpired

boolean ICertificate::isCurrentlyExpired()
Tests if the certificate has expired at the present time according to the X.509 validity of the

certificate.

6.15.3 querylnfo

wstring ICertificate::queryInfo(
[in] long what)

what

Way to extend the interface.

6.16 IChoiceFormValue (IFormValue)

Note: This interface extends [FormValue and therefore supports all its methods and
attributes as well.

51

6 Classes (interfaces)

6.16.1 Attributes
6.16.1.1 values (read-only)

wstring IChoiceFormValue::values[]

6.16.2 getSelectedindex

long IChoiceFormValue::getSelectedIndex()

6.16.3 setSelectedindex

IProgress IChoiceFormValue::setSelectedIndex(
[in] long index)

index

6.17 IClipboardErrorEvent (IClipboardEvent)

Note: This interface extends IClipboardEvent and therefore supports all its methods
and attributes as well.

Notification when a clipboard error occurred.

6.17.1 Attributes
6.17.1.1 msg (read-only)

wstring IClipboardErrorEvent: :msg

Error message in human readable format.

6.17.1.2 rcError (read-only)

long IClipboardErrorEvent::rcError

IPRT-style error code.

6.18 IClipboardEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

Abstract base interface for clipboard events.

6.18.1 Attributes
6.18.1.1 id (read-only)

wstring IClipboardEvent::id

Name of the clipboard this event belongs to.
For Windows or macOS hosts / guests, this string is empty. For X11-based hosts / guests, this
can hold either “PRIMARY” or “SECONDARY".

52

6 Classes (interfaces)

6.19 IClipboardFileTransferModeChangedEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

Notification when the shared clipboard file transfer mode changes.

6.19.1 Attributes
6.19.1.1 enabled (read-only)

boolean IClipboardFileTransferModeChangedEvent::enabled

Whether file transfers are allowed or not.

6.20 IClipboardModeChangedEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

Notification when the shared clipboard mode changes.

6.20.1 Attributes
6.20.1.1 clipboardMode (read-only)

ClipboardMode IClipboardModeChangedEvent::clipboardMode

The new clipboard mode.

6.21 ICloudClient

6.21.1 Attributes
6.21.1.1 cloudMachineList (read-only)

ICloudMachine ICloudClient::cloudMachinelList[]

See readCloudMachineList().

6.21.1.2 cloudMachineStubList (read-only)

ICloudMachine ICloudClient::cloudMachineStubList[]

See readCloudMachineStubList().

53

6 Classes (interfaces)

6.21.2 addCloudMachine

IProgress ICloudClient::addCloudMachine(
[in] wstring instanceld,
[out] ICloudMachine machine)

instanceld ID of an instance to be added as a cloud machine.
machine Object that represents the newly registered cloud machine.

Adopt a running instance and register it as cloud machine. This is kinda like adding a local
.vbox file as a local VM.

6.21.3 clonelnstance

IProgress ICloudClient::cloneInstance(
[in] wstring uid,
[in] wstring newName,
[out] ICloudMachine clone)

uid The id of instance in the Cloud that should be cloned. Prerequisities: The instance must
be in the list of VirtualBox cloud machines. VirtualBox operates only with those machines
which are already known.

newName Name for a cloud machine.
clone Object that represents a cloned cloud machine.

Clone cloud virtual machine.

6.21.4 createCloudMachine

IProgress ICloudClient::createCloudMachine(
[in] IVirtualSystemDescription description,
[out] ICloudMachine machine)

description Virtual system description object which describes the machine and all required pa-
rameters.

machine Object that represents the newly created cloud machine.

This is transitional method that combines launchVM() and addCloudMachine().

6.21.5 createlmage

IProgress ICloudClient::createImage(
[in] wstring parameters[])

parameters Each parameter in the array must be in the form “name=value”.

Create an image in the Cloud.

6.21.6 deletelmage

IProgress ICloudClient::deleteImage(
[in] wstring uid)

uid The id of image in the Cloud.

Delete an existing image with passed id from the Cloud.

54

6 Classes (interfaces)

6.21.7 exportlmage

IProgress ICloudClient::exportImage(
[in] IMedium image,
[in] wstring parameters[])

image Reference to the existing VBox image.
parameters Each parameter in the array must be in the form “name=value”.

Export an existing VBox image in the Cloud.

6.21.8 exportVM

void ICloudClient: :exportVM(
[in] IVirtualSystemDescription description,
[in] IProgress progress)

description Virtual system description object which describes the machine and all required pa-
rameters.

progress Progress object to track the operation completion.

Export local VM into the cloud, creating a custom image.

6.21.9 getCloudMachine

ICloudMachine ICloudClient::getCloudMachine(
[in] uuid id)

id UUID of a cloud machine.

Create an object that represents a cloud machine with the specified UUID. Note that the op-
eration is synchronous. The returned machine is initiatally in inaccessible state and requires a
refresh to get its data from the cloud.

6.21.10 getExportDescriptionForm

IProgress ICloudClient::getExportDescriptionForm(
[in] IVirtualSystemDescription description,
[out] IVirtualSystemDescriptionForm form)

description Virtual system description to be edited.
form An IForm instance for editing the virtual system description.

Returns a form for editing the virtual system description for exporting a local VM into a cloud
custom image.

6.21.11 getimageinfo

IProgress ICloudClient::getImageInfo(
[in] wstring uid,
[out] IStringArray infoArray)

uid The id of image in the Cloud.

infoArray An array where the image settings or properties is returned. Each parameter in the
array must be in the form “name=value”.

Returns the information about an image in the Cloud.

55

6 Classes (interfaces)

6.21.12 getimportDescriptionForm

IProgress ICloudClient::getImportDescriptionForm(
[in] IVirtualSystemDescription description,
[out] IVirtualSystemDescriptionForm form)

description Virtual system description to be edited.
form An IForm instance for editing the virtual system description.

Returns a form for editing the virtual system description for import from cloud.

6.21.13 getinstancelnfo

IProgress ICloudClient::getInstanceInfo(
[in] wstring uid,
[in] IVirtualSystemDescription description)

uid The id of instance in the Cloud.
description VirtualSystemDescription object which is describing a machine

Returns the information about an instance in the Cloud.

6.21.14 getLaunchDescriptionForm

IProgress ICloudClient::getlLaunchDescriptionForm(
[in] IVirtualSystemDescription description,
[out] IVirtualSystemDescriptionForm form)

description Virtual system description to be edited.

form An IForm instance for editing the virtual system description.

6.21.15 getMetricTypeByName

MetricType ICloudClient::getMetricTypeByName (
[in] wstring metricName)

metricName Metric name (see ICloudMachine::listMetricNames())

Tries to find an appropriate metric type for the passed metric name.

6.21.16 getSubnetSelectionForm

IProgress ICloudClient::getSubnetSelectionForm(
[in] IVirtualSystemDescription description,
[out] IVirtualSystemDescriptionForm form)

description Virtual system description to be edited.

form An IForm instance for editing the virtual system description.

56

6 Classes (interfaces)

6.21.17 getVniclnfo

IProgress ICloudClient::getVnicInfo(
[in] wstring uid,
[out] IStringArray infoArray)

uid The id of vnic in the Cloud.

infoArray An array where the Vnic settings/properties is returned. Each parameter in the array
must be in the form “name=value”.

Returns the information about Vnic in the Cloud.

6.21.18 importimage

IProgress ICloudClient::importImage(
[in] wstring uid,
[in] wstring parameters[])

uid the id of image in the Cloud.
parameters Each parameter in the array must be in the form “name=value”.

Import an existing image in the Cloud to the local host.

6.21.19 importinstance

void ICloudClient::importInstance(
[in] IVirtualSystemDescription description,
[in] IProgress progress)

description VirtualSystemDescription object which is describing a machine and all required
parameters.

progress Progress object to track the operation completion.

Import an existing cloud instance to the local host. All needed parameters are passed in the
description (VSD).

6.21.20 launchVM

IProgress ICloudClient::launchVM(
[in] IVirtualSystemDescription description)

description Virtual system description object which describes the machine and all required pa-
rameters.

6.21.21 listBootVolumes

IProgress ICloudClient::listBootVolumes (
[out] IStringArray returnNames,
[out] IStringArray returnlds)

returnNames Boot volume names.

returnlds Boot volume ids.

Returns the list of boot volumes in the Cloud.

57

6 Classes (interfaces)

6.21.22 listimages

IProgress ICloudClient::listImages(
[in] CloudImageState imageState[],
[out] IStringArray returnNames,
[out] IStringArray returnIds)

imageState State of each image.
returnNames Images names.

returnlds Images ids.

Returns the list of the images in the Cloud.

6.21.23 listinstances

IProgress ICloudClient::listInstances(
[in] CloudMachineState machineStatel[],
[out] IStringArray returnNames,
[out] IStringArray returnIds)

machineState State of each VM.
returnNames VM names.

returnlds VM ids.

Returns the list of the instances in the Cloud.

6.21.24 listSourceBootVolumes

IProgress ICloudClient::listSourceBootVolumes (
[out] IStringArray returnNames,
[out] IStringArray returnIds)

returnNames Boot volume names.
returnlds Boot volume ids.

Returns the list of boot volumes in the cloud that can be added/adopted as VirtualBox cloud
machines.

6.21.25 listSourcelnstances

IProgress ICloudClient::1listSourceInstances(
[out] IStringArray returnNames,
[out] IStringArray returnIds)

returnNames Instance names.

returnlds Instance idss.

Returns the list of instances in the cloud that can be added/adopted as VirtualBox cloud ma-
chines.

58

6 Classes (interfaces)

6.21.26 listVnicAttachments

IProgress ICloudClient::listVnicAttachments(
[in] wstring parameters[],
[out] IStringArray returnVnicAttachmentlIds,
[out] IStringArray returnVnicIds)

d

parameters Each parameter in the array must be in the form “name=value”.
returnVnicAttachmentlds VM ids.

returnVniclds VM ids.

Returns the list of the Vnic attachements in the Cloud.

6.21.27 pauselnstance

IProgress ICloudClient::pauseInstance(
[in] wstring uid)

uid The id of instance in the Cloud.

Pause an existing instance with passed id.

6.21.28 readCloudMachinelList

IProgress ICloudClient::readCloudMachinelList ()

Make the list of cloud machines available via cloudMachineList[] attribute.

6.21.29 readCloudMachineStubList

IProgress ICloudClient::readCloudMachineStubList()

Make the list of cloud machine stubs available via cloudMachineStubList[] attribute. Like with
getCloudMachine(), the returned machines are initiatally inaccessible and require a refresh to
get their data from the cloud.

6.21.30 resetinstance

IProgress ICloudClient::resetInstance(
[in] wstring uid)

uid The id of instance in the Cloud.

Reset an existing instance with passed id.

6.21.31 setupCloudNetworkEnvironment

IProgress ICloudClient::setupCloudNetworkEnvironment (
[in] wstring tunnelNetworkName,
[in] wstring tunnelNetworkRange,
[in] wstring gatewayOsName,
[in] wstring gatewayOsVersion,
[in] wstring gatewayShape,
[out] ICloudNetworkEnvironmentInfo networkEnvironmentInfo)

59

6 Classes (interfaces)

tunnelNetworkName The name of tunnelling network to be created in the Cloud. If this pa-
rameter is empty the default value “VirtualBox Tunneling Network” is assumed.

tunnelNetworkRange The IP address range of tunnelling network to be created in the Cloud.

If this parameter is empty the default value “10.0.0.0/16” is assumed.

gatewayOsName The name of the operating system to be used for cloud gateway instances.

The default value is “Oracle Linux”.

gatewayOsVersion The version of the operating system to be used for cloud gateway instances.

The default value is “7.8”.

gatewayShape The shape of cloud gateway instance. The default value is “VM.Standard2.1”.

networkEnvironmentinfo Information about the created network environment.

6.21.32 startCloudNetworkGateway

IProgress ICloudClient::startCloudNetworkGateway (
[in] ICloudNetwork network,
[in] wstring sshPublicKey,
[out] ICloudNetworkGatewayInfo gatewayInfo)

network The id of image in the Cloud.
sshPublicKey The id of image in the Cloud.

gatewaylnfo Information about the started gateway.

6.21.33 startinstance

IProgress ICloudClient::startInstance(
[in] wstring uid)

uid The id of instance in the Cloud.

Start an existing instance with passed id.

6.21.34 terminatelnstance

IProgress ICloudClient::terminateInstance(
[in] wstring uid)

uid the id of instance in the Cloud.

Terminate an existing instance with passed id.

6.22 ICloudMachine

Virtual virtual machine (sic) in the cloud.
Reading object attributes returns cached values, use refresh() to refresh them.

6.22.1 Attributes
6.22.1.1 id (read-only)

uuid ICloudMachine::id

UUID of the cloud machine within VirtualBox.

60

6 Classes (interfaces)

6.22.1.2 cloudld (read-only)

wstring ICloudMachine::cloudId

UUID of the cloud machine within Cloud

6.22.1.3 accessible (read-only)

boolean ICloudMachine::accessible

Whether this virtual machine is currently accessible or not. TBD...

6.22.1.4 accessEtrror (read-only)

IVirtualBoxErrorInfo ICloudMachine::accessError

Error information describing the reason of machine inaccessibility.
Reading this property is only valid after the last call to accessible returned false (i.e. the ma-
chine is currently inaccessible). Otherwise, a null IVirtualBoxErrorInfo object will be returned.

6.22.1.5 name (read-only)

wstring ICloudMachine: :name

Convenience shortcut to retrieve the name of the cloud machine. The name is part of the
machine settings that are hidden behind the settings form (see getSettingsForm()).

6.22.1.6 OSTypeld (read-only)

wstring ICloudMachine: :0STypeld

Convenience shortcut to retrieve the OS Type id of the cloud machine. It is part of the machine
settings that are hidden behind the settings form (see getSettingsForm()).

6.22.1.7 state (read-only)

CloudMachineState ICloudMachine::state

Machine state.

6.22.1.8 consoleConnectionFingerprint (read-only)

wstring ICloudMachine::consoleConnectionFingerprint

The fingerprint of the ssh key that is authorized to access the machine’s console connection.

6.22.1.9 serialConsoleCommand (read-only)

wstring ICloudMachine::serialConsoleCommand

The shell command to establish ssh connection to the cloud machine serial console.

6.22.1.10 serialConsoleCommandWindows (read-only)

wstring ICloudMachine::serialConsoleCommandWindows

The PowerShell command to establish ssh connection to the cloud machine serial console using
PuTTY’s plink.

61

6 Classes (interfaces)

6.22.1.11 VNCConsoleCommand (read-only)

wstring ICloudMachine::VNCConsoleCommand

The shell command to establish ssh port forwarding for the VNC connection to the cloud
machine console.

6.22.1.12 VNCConsoleCommandWindows (read-only)

wstring ICloudMachine: :VNCConsoleCommandWindows

The PowerShell command to establish ssh port forwarding for the VNC connection to the cloud
machine console using PuTTY’s plink.

6.22.2 createConsoleConnection

IProgress ICloudMachine::createConsoleConnection(
[in] wstring sshPublicKey)

sshPublicKey SSH public key authorized to connect to the console.

6.22.3 deleteConsoleConnection

IProgress ICloudMachine::deleteConsoleConnection()

6.22.4 enumerateMetricData

IProgress ICloudMachine::enumerateMetricData(
[in] MetricType metricType,
[in] unsigned long pointsNumber,
[out] IStringArray values,
[out] IStringArray timestamps,
[out] IStringArray unit)

metricType The type of the requested metric. Standard usage to get an appropriate Metric-
Type: - call listMetricNames() function; returns the types in string representation. - call
ICloudClient::getMetricTypeByName() function; converts the string representation into
MetricType.

pointsNumber History metric point numbers start at 1 and can go backwards as long as history
exists. Points are counted from the current time to the past. If user only wants the last
actual value he passes the value “1”. If 2 values need to be returned (last and second to
last), the user passes “2”, etc. and etc.

values The values of the metric returned.

timestamps The timestamps of the metric returned. The array entries match the corresponding
entries in the array. Time format is represented in Rfc2822.
7”7«

unit The measurement unit as “byte”, “percentage” and etc... The array entries match the corre-
sponding entries in the array.

Returns the interested metric history points.

62

6 Classes (interfaces)

6.22.5 getConsoleHistory

IProgress ICloudMachine::getConsoleHistory(
[out] IDataStream stream)

stream Data stream object for reading the console history. For now we are abusing/repurposing
this interface from the media convertion API to avoid marshalling a huge string through
xpcom.

Get the backlog of the machine’s console. If you have ever seen console teletypes, this is like
looking at the last few meters of the paper it spewed.

6.22.6 getDetailsForm

IForm ICloudMachine::getDetailsForm()

Obtain a form with the current settings for this cloud machine. The form is not editable.

6.22.7 getSettingsForm

IProgress ICloudMachine::getSettingsForm(
[out] IForm form)

form A form with the cloud machine settings.

Obtain a form with settings for this cloud machine. The form is editable.

6.22.8 listMetricNames

IProgress ICloudMachine::listMetricNames (
[out] IStringArray metricNames)

metricNames List of metrics names. May be empty if there are no metrics available on the
instance or if the corresponding service is not running on the instance.

Returns the metrics available for the instances in the Cloud. In instance, CPU utilization,
memory utilization, disk read I/O. Not all instances can have such metrics because a special
service must be running on the instance. Converting a string representation to a MetricType is
done using ICloudClient::getMetricTypeByName().

6.22.9 powerDown

IProgress ICloudMachine: :powerDown()

Initiates the power down procedure to stop the virtual machine execution.

The completion of the power down procedure is tracked using the returned IProgress object.
After the operation is complete, the machine will go to the PoweredOff state.

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine must be Running, to be powered down.

6.22.10 powerUp

IProgress ICloudMachine: :powerUp()

Start cloud virtual machine execution.

63

6 Classes (interfaces)

6.22.11 reboot

IProgress ICloudMachine::reboot()

Reboot cloud virtual machine.

6.22.12 refresh

IProgress ICloudMachine::refresh()

Refresh information by reading it from the cloud.

6.22.13 remove

IProgress ICloudMachine::remove()

Unregister this cloud machine and delete all its cloud artifacts.

6.22.14 reset

IProgress ICloudMachine::reset()

Forcing reset or hard reset of a cloud virtual machine.

6.22.15 shutdown

IProgress ICloudMachine::shutdown()

Shutdown cloud virtual machine.

6.22.16 terminate

IProgress ICloudMachine::terminate()

Terminate cloud virtual machine.

6.22.17 unregister

IProgress ICloudMachine::unregister()

Unregister this cloud machine, but leave the cloud artifacts intact.

6.23 ICloudNetwork
6.23.1 Attributes

6.23.1.1 networkName (read/write)

wstring ICloudNetwork: :networkName

TBD: User-friendly, descriptive name of cloud subnet. For example, domain names of subnet
and vcn, separated by dot.

6.23.1.2 enabled (read/write)

boolean ICloudNetwork::enabled

64

6 Classes (interfaces)

6.23.1.3 provider (read/write)

wstring ICloudNetwork::provider

Cloud provider short name.

6.23.1.4 profile (read/write)

wstring ICloudNetwork::profile

Cloud profile name.

6.23.1.5 networkld (read/write)

wstring ICloudNetwork::networkId

Cloud network id.

6.24 ICloudNetworkEnvironmentinfo

6.24.1 Attributes
6.24.1.1 tunnelNetworkld (read-only)

wstring ICloudNetworkEnvironmentInfo::tunnelNetworkId

6.25 ICloudNetworkGatewaylinfo

6.25.1 Attributes
6.25.1.1 publiclP (read-only)

wstring ICloudNetworkGatewayInfo::publicIP

6.25.1.2 secondaryPubliclP (read-only)

wstring ICloudNetworkGatewayInfo::secondaryPublicIP

6.25.1.3 macAddress (read-only)

wstring ICloudNetworkGatewayInfo::macAddress

6.25.1.4 instanceld (read-only)

wstring ICloudNetworkGatewayInfo::instanceld

6.26 ICloudProfile
6.26.1 Attributes

6.26.1.1 name (read/write)

wstring ICloudProfile: :name

Returns the profile name.

65

6 Classes (interfaces)

6.26.1.2 providerld (read-only)

uuid ICloudProfile::providerId

Returns provider identifier tied with this profile.

6.26.2 createCloudClient

ICloudClient ICloudProfile::createCloudClient()

Creates a cloud client for this cloud profile.

6.26.3 getProperties

wstring[] ICloudProfile::getProperties(
[in] wstring names,
[out] wstring returnNames[])
names Names of properties to get.
returnNames Names of returned properties.

Returns values for a group of properties in one call.

The names of the properties to get are specified using the names argument which is a list of
comma-separated property names or an empty string if all properties are to be returned.

all existing properties.

Note: Currently the value of this argument is ignored and the method always returns

The method returns two arrays, the array of property names corresponding to the names argu-
ment and the current values of these properties. Both arrays have the same number of elements
with each element at the given index in the first array corresponds to an element at the same

index in the second array.

6.26.4 getProperty

wstring ICloudProfile::getProperty(
[in] wstring name)

name Name of the property to get.

Returns the value of the cloud profile property with the given name.
If the requested data name does not exist, this function will succeed and return an empty string

in the value argument.

If this method fails, the following error codes may be reported:

e E_INVALIDARG: name is null or empty.

6.26.5 remove

void ICloudProfile::remove()

Deletes a profile.

66

6 Classes (interfaces)

6.26.6 setProperties

void ICloudProfile::setProperties(
[in] wstring names|[],
[in] wstring values[])

names Names of properties.

values Values of set properties.

Updates profile, changing/adding/removing properties.

The names of the properties to set are passed in the names array along with the new values
for them in the values array. Both arrays have the same number of elements with each element
at the given index in the first array corresponding to an element at the same index in the second
array.

If there is at least one property name in names that is not valid, the method will fail before
changing the values of any other properties from the names array.

Using this method over setProperty() is preferred if you need to set several properties at once
since it is more efficient.

Setting the property value to null or an empty string is equivalent to deleting the existing
value.

6.26.7 setProperty

void ICloudProfile::setProperty(
[in] wstring name,
[in] wstring value)

name Name of the property to set.

value Property value to set.

Sets the value of the cloud profile property with the given name.

Setting the property value to null or an empty string is equivalent to deleting the existing
value.

If this method fails, the following error codes may be reported:

e E_INVALIDARG: name is null or empty.

6.27 ICloudProfileChangedEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

6.27.1 Attributes
6.27.1.1 providerld (read-only)

uuid ICloudProfileChangedEvent::providerId

6.27.1.2 name (read-only)

wstring ICloudProfileChangedEvent: :name

67

6 Classes (interfaces)

6.28 ICloudProfileRegisteredEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

6.28.1 Attributes
6.28.1.1 providerld (read-only)

uuid ICloudProfileRegisteredEvent::providerId

6.28.1.2 name (read-only)

wstring ICloudProfileRegisteredEvent: :name

6.28.1.3 registered (read-only)

boolean ICloudProfileRegisteredEvent::registered

6.29 ICloudProvider

6.29.1 Attributes
6.29.1.1 name (read-only)

wstring ICloudProvider: :name
Returns the long name of the provider. Includes vendor and precise product name spelled out

in the preferred way.

6.29.1.2 shortName (read-only)

wstring ICloudProvider::shortName

Returns the short name of the provider. Less than 8 ASCII chars, using acronyms. No vendor
name, but can contain a hint if it’s a 3rd party implementation for this cloud provider, to keep it
unique.

6.29.1.3 id (read-only)

uuid ICloudProvider::id

Returns the UUID of this cloud provider.

6.29.1.4 profiles (read-only)

ICloudProfile ICloudProvider::profiles|[]

Returns all profiles for this cloud provider.

6.29.1.5 profileNames (read-only)

wstring ICloudProvider::profileNames[]

Returns all profile names for this cloud provider.

68

6 Classes (interfaces)

6.29.1.6 supportedPropertyNames (read-only)

wstring ICloudProvider: :supportedPropertyNames|[]

Returns the supported property names.

6.29.2 createProfile

void ICloudProvider::createProfile(
[in] wstring profileName,
[in] wstring names[],
[in] wstring values[])
profileName The profile name. Must not exist, otherwise an error is raised.
names Names of properties.
values Values of set properties.

Creates a new profile.

6.29.3 getProfileByName

ICloudProfile ICloudProvider::getProfileByName(
[in] wstring profileName)

profileName

6.29.4 getPropertyDescription

wstring ICloudProvider::getPropertyDescription(
[in] wstring name)

name Property name.

6.29.5 importProfiles

void ICloudProvider::importProfiles()

Import the profiles from the original source

6.29.6 prepareUninstall

void ICloudProvider::prepareUninstall()

The caller requests the cloud provider to cease operation. Should return an error if this is
currently not possible (due to ongoing cloud activity, possibly by a different API client). However,
this must not wait for the completion for a larger amount of time (ideally stays below a second
of execution time). If this succeeds it should leave the cloud provider in a state which does not

allow starting new operations.

6.29.7 restoreProfiles

void ICloudProvider::restoreProfiles()

Restores the old local profiles if they exist

69

6 Classes (interfaces)

6.29.8 saveProfiles

void ICloudProvider::saveProfiles()

Saves the local profiles

6.30 ICloudProviderListChangedEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

Each individual provider that is installed or uninstalled is reported as an
ICloudProviderRegisteredEvent. When the batch is done this event is sent and listerns
can get the new list.

6.30.1 Attributes
6.30.1.1 registered (read-only)

boolean ICloudProviderListChangedEvent::registered

6.31 ICloudProviderManager

6.31.1 Attributes
6.31.1.1 providers (read-only)

ICloudProvider ICloudProviderManager::providers][]

Returns all supported cloud providers.

6.31.2 getProviderByld

ICloudProvider ICloudProviderManager::getProviderById(
[in] uuid providerId)

providerld

6.31.3 getProviderByName

ICloudProvider ICloudProviderManager::getProviderByName (
[in] wstring providerName)

providerName

6.31.4 getProviderByShortName

ICloudProvider ICloudProviderManager::getProviderByShortName (
[in] wstring providerName)

providerName

70

6 Classes (interfaces)

6.32 ICloudProviderRegisteredEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

A cloud provider was installed or uninstalled. See also ICloudProviderListChangedEvent.

6.32.1 Attributes
6.32.1.1 id (read-only)

uuid ICloudProviderRegisteredEvent::id

6.32.1.2 registered (read-only)

boolean ICloudProviderRegisteredEvent::registered

6.33 ICloudProviderUninstallEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

A cloud provider is about to be uninstalled. Unlike ICloudProviderRegisteredEvent this one is
waitable and is sent before an attempt is made to uninstall a provider. Listerns should release ref-
erences to the provider and related objects if they have any, or the uninstallation of the provider
is going to fail because it’s still in use.

6.33.1 Attributes
6.33.1.1 id (read-only)

uuid ICloudProviderUninstallEvent::id

6.34 IConsole

The IConsole interface represents an interface to control virtual machine execution.

A console object gets created when a machine has been locked for a particular session (client
process) using IMachine::lockMachine() or IMachine::launchVMProcess(). The console object
can then be found in the session’s ISession::console attribute.

Methods of the IConsole interface allow the caller to query the current virtual machine exe-
cution state, pause the machine or power it down, save the machine state or take a snapshot,
attach and detach removable media and so on.

See also: ISession

6.34.1 Attributes
6.34.1.1 machine (read-only)

IMachine IConsole::machine

Machine object for this console session.

71

6 Classes (interfaces)

Note: This is a convenience property, it has the same value as ISession::machine of the
corresponding session object.

6.34.1.2 state (read-only)

MachineState IConsole::state

Current execution state of the machine.

Note: This property always returns the same value as the corresponding property of
the IMachine object for this console session. For the process that owns (executes) the
VM, this is the preferable way of querying the VM state, because no IPC calls are made.

6.34.1.3 guest (read-only)

IGuest IConsole::guest

Guest object.

6.34.1.4 keyboard (read-only)

IKeyboard IConsole::keyboard

Virtual keyboard object.

Note: If the machine is not running, any attempt to use the returned object will result
in an error.

6.34.1.5 mouse (read-only)

IMouse IConsole::mouse

Virtual mouse object.

Note: If the machine is not running, any attempt to use the returned object will result
in an error.

6.34.1.6 display (read-only)

IDisplay IConsole::display

Virtual display object.

Note: If the machine is not running, any attempt to use the returned object will result
in an error.

72

6 Classes (interfaces)

6.34.1.7 debugger (read-only)

IMachineDebugger IConsole::debugger

Debugging interface.

6.34.1.8 USBDevices (read-only)

IUSBDevice IConsole::USBDevices|[]

Collection of USB devices currently attached to the virtual USB controller.

Note: The collection is empty if the machine is not running.

6.34.1.9 remoteUSBDevices (read-only)

IHostUSBDevice IConsole::remoteUSBDevices]]

List of USB devices currently attached to the remote VRDE client. Once a new device is phys-
ically attached to the remote host computer, it appears in this list and remains there until de-
tached.

6.34.1.10 sharedFolders (read-only)

ISharedFolder IConsole::sharedFolders[]

Collection of shared folders for the current session. These folders are called transient shared
folders because they are available to the guest OS running inside the associated virtual machine
only for the duration of the session (as opposed to IMachine::sharedFolders[] which represent
permanent shared folders). When the session is closed (e.g. the machine is powered down),
these folders are automatically discarded.

New shared folders are added to the collection using createSharedFolder(). Existing shared
folders can be removed using removeSharedFolder().

6.34.1.11 VRDEServerInfo (read-only)
IVRDEServerInfo IConsole::VRDEServerInfo
Interface that provides information on Remote Desktop Extension (VRDE) connection.
6.34.1.12 eventSource (read-only)
IEventSource IConsole::eventSource
Event source for console events.
6.34.1.13 attachedPClIDevices (read-only)
IPCIDeviceAttachment IConsole::attachedPCIDevices][]

Array of PCI devices attached to this machine.

73

6 Classes (interfaces)

6.34.1.14 useHostClipboard (read/write)

boolean IConsole::useHostClipboard

Whether the guest clipboard should be connected to the host one or whether it should only
be allowed access to the VRDE clipboard. This setting may not affect existing guest clipboard
connections which are already connected to the host clipboard.

6.34.1.15 emulatedUSB (read-only)

IEmulatedUSB IConsole::emulatedUSB

Interface that manages emulated USB devices.

6.34.2 addEncryptionPassword

void IConsole::addEncryptionPassword(
[in] wstring id,
[in] wstring password,
[in] boolean clearOnSuspend)

id The identifier used for the password. Must match the identifier used when the encrypted
medium was created.

password The password.

clearOnSuspend Flag whether to clear the password on VM suspend (due to a suspending host
for example). The password must be supplied again before the VM can resume.

Adds a password used for encryption/decryption.
If this method fails, the following error codes may be reported:

e VBOX_E_PASSWORD_INCORRECT: The password provided wasn’t correct for at least one
disk using the provided ID.

6.34.3 addEncryptionPasswords

void IConsole::addEncryptionPasswords(
[in] wstring ids[],
[in] wstring passwords[],
[in] boolean clearOnSuspend)

ids List of identifiers for the passwords. Must match the identifier used when the encrypted
medium was created.

passwords List of passwords.

clearOnSuspend Flag whether to clear the given passwords on VM suspend (due to a suspend-
ing host for example). The passwords must be supplied again before the VM can resume.

Adds a password used for encryption/decryption.
If this method fails, the following error codes may be reported:

e VBOX_E_PASSWORD_INCORRECT: The password provided wasn’t correct for at least one
disk using the provided ID.

74

6 Classes (interfaces)

6.34.4 attachUSBDevice

void IConsole::attachUSBDevice(
[in] uuid id,
[in] wstring captureFilename)

id UUID of the host USB device to attach.

captureFilename Filename to capture the USB traffic to.

Attaches a host USB device with the given UUID to the USB controller of the virtual machine.

The device needs to be in one of the following states: Busy, Available or Held, otherwise an
error is immediately returned.

When the device state is Busy, an error may also be returned if the host computer refuses to
release it for some reason.

See also: IUSBDeviceFilters::deviceFilters[], USBDeviceState

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine state neither Running nor Paused.
e VBOX_E_PDM_ERROR: Virtual machine does not have a USB controller.

6.34.5 clearAllEncryptionPasswords

void IConsole::clearAllEncryptionPasswords()

Clears all provided supplied encryption passwords.

6.34.6 createSharedFolder

void IConsole::createSharedFolder(
[in] wstring name,
[in] wstring hostPath,
[in] boolean writable,
[in] boolean automount,
[in] wstring autoMountPoint)

name Unique logical name of the shared folder.

hostPath Full path to the shared folder in the host file system.

writable Whether the share is writable or readonly

automount Whether the share gets automatically mounted by the guest or not.

autoMountPoint Where the guest should automatically mount the folder, if possible. For Win-
dows and OS/2 guests this should be a drive letter, while other guests it should be a
absolute directory.

Creates a transient new shared folder by associating the given logical name with the given host
path, adds it to the collection of shared folders and starts sharing it. Refer to the description of
ISharedFolder to read more about logical names.

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine is in the Saved or AbortedSaved state or
currently changing state.

e VBOX_E_FILE_ERROR: Shared folder already exists or not accessible.

75

6 Classes (interfaces)

6.34.7 detachUSBDevice

IUSBDevice IConsole::detachUSBDevice(
[in] uuid id)

id UUID of the USB device to detach.

Detaches a USB device with the given UUID from the USB controller of the virtual machine.

After this method succeeds, the VirtualBox server re-initiates all USB filters as if the device
were just physically attached to the host, but filters of this machine are ignored to avoid a
possible automatic re-attachment.

See also: IUSBDeviceFilters::deviceFilters[], USBDeviceState

If this method fails, the following error codes may be reported:

e VBOX_E_PDM_ERROR: Virtual machine does not have a USB controller.

e E_INVALIDARG: USB device not attached to this virtual machine.

6.34.8 findUSBDeviceByAddress

IUSBDevice IConsole::findUSBDeviceByAddress (
[in] wstring name)

name Address of the USB device (as assigned by the host) to search for.

Searches for a USB device with the given host address.
See also: IUSBDevice::address
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: Given name does not correspond to any USB device.

6.34.9 findUSBDeviceByld

IUSBDevice IConsole::findUSBDeviceById (
[in] uuid id)

id UUID of the USB device to search for.

Searches for a USB device with the given UUID.
See also: IUSBDevice::id
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: Given id does not correspond to any USB device.

6.34.10 getDeviceActivity

DeviceActivity[] IConsole::getDeviceActivity(
[in] DeviceType typel[])

type

Gets the current activity type of given devices or device groups.
If this method fails, the following error codes may be reported:

e E_INVALIDARG: Invalid device type.

76

6 Classes (interfaces)

6.34.11 getGuestEnteredACPIMode

boolean IConsole::getGuestEnteredACPIMode ()

Checks if the guest entered the ACPI mode GO (working) or G1 (sleeping). If this method
returns false, the guest will most likely not respond to external ACPI events.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID VM_STATE: Virtual machine notin Running state.

6.34.12 getPowerButtonHandled

boolean IConsole::getPowerButtonHandled()

Checks if the last power button event was handled by guest.
If this method fails, the following error codes may be reported:

e VBOX_E_PDM_ERROR: Checking if the event was handled by the guest OS failed.

6.34.13 pause

void IConsole::pause()

Pauses the virtual machine execution.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine not in Running state.

e VBOX_E_VM_ERROR: Virtual machine error in suspend operation.

6.34.14 powerButton

void IConsole::powerButton()

Sends the ACPI power button event to the guest.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID VM_STATE: Virtual machine notin Running state.
e VBOX_E_PDM_ERROR: Controlled power off failed.

6.34.15 powerDown

IProgress IConsole: :powerDown()

Initiates the power down procedure to stop the virtual machine execution.

The completion of the power down procedure is tracked using the returned IProgress object.
After the operation is complete, the machine will go to the PoweredOff state.

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID VM_STATE: Virtual machine must be Running, Paused or Stuck to be
powered down.

77

6 Classes (interfaces)

6.34.16 powerUp

IProgress IConsole: :powerUp()

Starts the virtual machine execution using the current machine state (that is, its current exe-
cution state, current settings and current storage devices).

Note: This method is only useful for front-ends that want to actually execute virtual
machines in their own process (like the VirtualBox or VBoxSDL front-ends). Unless you
are intending to write such a front-end, do not call this method. If you simply want to
start virtual machine execution using one of the existing front-ends (for example the
VirtualBox GUI or headless server), use IMachine::launchVMProcess() instead; these
front-ends will power up the machine automatically for you.

If the machine is powered off or aborted, the execution will start from the beginning (as if the
real hardware were just powered on).

If the machine is in the Saved state or the AbortedSaved state it will continue its execution
from the point where the state was saved.

If the machine IMachine::teleporterEnabled property is enabled on the machine being pow-
ered up, the machine will wait for an incoming teleportation in the Teleportingln state. The
returned progress object will have at least three operations where the last three are defined as:
(1) powering up and starting TCP server, (2) waiting for incoming teleportations, and (3) per-
form teleportation. These operations will be reflected as the last three operations of the progress
objected returned by IMachine::launchVMProcess() as well.

See also: IMachine::saveState()

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine already running.
e VBOX_E_HOST_ERROR: Host interface does not exist or name not set.

e VBOX_E_FILE_ERROR: Invalid saved state file.

6.34.17 powerUpPaused
IProgress IConsole::powerUpPaused()

Identical to powerUp except that the VM will enter the Paused state, instead of Running.
See also: powerUp()
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine already running.
e VBOX_E_HOST_ERROR: Host interface does not exist or name not set.

e VBOX_E_FILE_ERROR: Invalid saved state file.

6.34.18 removeEncryptionPassword

void IConsole::removeEncryptionPassword(
[in] wstring id)

id The identifier used for the password. Must match the identifier used when the encrypted
medium was created.

Removes a password used for hard disk encryption/decryption from the running VM. As soon
as the medium requiring this password is accessed the VM is paused with an error and the
password must be provided again.

78

6 Classes (interfaces)

6.34.19 removeSharedFolder

void IConsole::removeSharedFolder(
[in] wstring name)

name Logical name of the shared folder to remove.

Removes a transient shared folder with the given name previously created by
createSharedFolder() from the collection of shared folders and stops sharing it.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine is in the Saved or AbortedSaved state or
currently changing state.

e VBOX_E_FILE_ERROR: Shared folder does not exists.

6.34.20 reset

void IConsole::reset()

Resets the virtual machine.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine notin Running state.

e VBOX_E_VM_ERROR: Virtual machine error in reset operation.

6.34.21 resume

void IConsole::resume()

Resumes the virtual machine execution.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine not in Paused state.

e VBOX_E_VM_ERROR: Virtual machine error in resume operation.

6.34.22 sleepButton

void IConsole::sleepButton()

Sends the ACPI sleep button event to the guest.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine notin Running state.

e VBOX_E_PDM_ERROR: Sending sleep button event failed.

6.34.23 teleport

IProgress IConsole::teleport(
[in] wstring hostname,
[in] unsigned long tcpport,
[in] wstring password,
[in] unsigned long maxDowntime)

hosthame The name or IP of the host to teleport to.

79

6 Classes (interfaces)

tcpport The TCP port to connect to (1..65535).
password The password.

maxDowntime The maximum allowed downtime given as milliseconds. O is not a valid value.
Recommended value: 250 ms.

The higher the value is, the greater the chance for a successful teleportation. A small value
may easily result in the teleportation process taking hours and eventually fail.

Note: The current implementation treats this a guideline, not as an absolute rule.

Teleport the VM to a different host machine or process.
@todo Explain the details.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine not running or paused.

6.35 ICursorPositionChangedEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

The guest reports cursor position data.

6.35.1 Attributes
6.35.1.1 hasData (read-only)

boolean ICursorPositionChangedEvent::hasData
Event contains valid data. If not set, switch back to using the host cursor.
6.35.1.2 x (read-only)
unsigned long ICursorPositionChangedEvent: :x
Reported X position
6.35.1.3 y (read-only)
unsigned long ICursorPositionChangedEvent::y

Reported Y position

6.36 IDHCPConfig

The DHCP server has several configuration levels: global, group and individual MAC. This inter-
face implements the settings common to each level.

80

6 Classes (interfaces)

6.36.1 Attributes

6.36.1.1 scope (read-only)
DHCPConfigScope IDHCPConfig::scope

Indicates the kind of config this is (mostly for IDHCPIndividualConfig).

6.36.1.2 minLeaseTime (read/write)

unsigned long IDHCPConfig::minLeaseTime

The minimum lease time in seconds, ignored if zero.

6.36.1.3 defaultLeaseTime (read/write)

unsigned long IDHCPConfig::defaultLeaseTime

The default lease time in seconds, ignored if zero.

6.36.1.4 maxLeaseTime (read/write)

unsigned long IDHCPConfig::maxLeaseTime

The maximum lease time in seconds, ignored if zero.

6.36.1.5 forcedOptions (read/write)

DHCPOption IDHCPConfig::forcedOptions[]

List of DHCP options which should be forced upon the clients in this config scope when they
are available, whether the clients asks for them or not.

6.36.1.6 suppressedOptions (read/write)

DHCPOption IDHCPConfig::suppressedOptions|[]

List of DHCP options which should not be sent to the clients in this config scope. This is
intended for cases where one client or a group of clients shouldn’t see one or more (typically
global) options.

6.36.2 getAllOptions

wstring[] IDHCPConfig::getAllOptions(
[out] DHCPOption options[],
[out] DHCPOptionEncoding encodings[])
options Array containing the DHCP option numbers.
encodings Array of value encodings that runs parallel to options.

Gets all DHCP options and their values

81

6 Classes (interfaces)

6.36.3 getOption

wstring IDHCPConfig::getOption(
[in] DHCPOption option,
[out] DHCPOptionEncoding encoding)

option The DHCP option being sought.
encoding The value encoding.

Gets the value of a single DHCP option.

6.36.4 remove
void IDHCPConfig::remove()

Remove this group or individual configuration. Will of course not work on global configura-
tions.

6.36.5 removeAllOptions
void IDHCPConfig::removeAllOptions()

Removes all the options.
One exception here is the DhcpOpt_SubnetMask option in the global scope that is linked to
the IDHCPServer::networkMask attribute and therefore cannot be removed.

6.36.6 removeOption

void IDHCPConfig::removeOption(
[in] DHCPOption option)

option

Removes the given DHCP option.

6.36.7 setOption

void IDHCPConfig::setOption(
[in] DHCPOption option,
[in] DHCPOptionEncoding encoding,
[in] wstring value)

option The DHCP option.
encoding The value encoding.

value The DHCP option value. The exact format depends on the DHCP option value and
encoding, see see DHCPOption for the Normal format.

Sets a DHCP option.

6.37 IDHCPGIobalConfig (IDHCPConfig)

Note: This interface extends IDHCPConfig and therefore supports all its methods and
attributes as well.

The global DHCP server configuration, see IDHCPServer::globalConfig.

82

6 Classes (interfaces)

6.38 IDHCPGroupCondition
6.38.1 Attributes

6.38.1.1 inclusive (read/write)

boolean IDHCPGroupCondition::inclusive

Whether this is an inclusive or exclusive group membership condition

6.38.1.2 type (read/write)

DHCPGroupConditionType IDHCPGroupCondition::type

Defines how the value is interpreted.

6.38.1.3 value (read/write)

wstring IDHCPGroupCondition::value

The condition value.

6.38.2 remove

void IDHCPGroupCondition::remove()

Remove this condition from the group.

6.39 IDHCPGroupConfig (IDHCPConfig)

Note: This interface extends IDHCPConfig and therefore supports all its methods and
attributes as well.

A configuration that applies to a group of NICs.

6.39.1 Attributes
6.39.1.1 name (read/write)

wstring IDHCPGroupConfig::name

The group name.

6.39.1.2 conditions (read-only)

IDHCPGroupCondition IDHCPGroupConfig::conditions|[]

Group membership conditions.
Add new conditions by calling addCondition() and use IDHCPGroupCondition::remove() to
remove.

83

6 Classes (interfaces)

6.39.2 addCondition

IDHCPGroupCondition IDHCPGroupConfig::addCondition(
[in] boolean inclusive,
[in] DHCPGroupConditionType type,
[in] wstring value)

inclusive

type

value

Adds a new condition.

6.39.3 removeAllConditions

void IDHCPGroupConfig::removeAllConditions()

Removes all conditions.

6.40 IDHCPIndividualConfig (IDHCPConfig)

Note: This interface extends IDHCPConfig and therefore supports all its methods and
attributes as well.

Configuration for a single NIC, either given directly by MAC address or by VM + adaptor slot
number.

6.40.1 Attributes
6.40.1.1 MACAddress (read-only)

wstring IDHCPIndividualConfig::MACAddress

The MAC address. If a MachineNIC config, this will be queried via the VM ID.

6.40.1.2 machineld (read-only)

uuid IDHCPIndividualConfig::machineld

The virtual machine ID if a MachineNIC config, null UUID for MAC.

6.40.1.3 slot (read-only)

unsigned long IDHCPIndividualConfig::slot

The NIC slot number of the VM if a MachineNIC config.

6.40.1.4 fixedAddress (read/write)

wstring IDHCPIndividualConfig::fixedAddress

Fixed IPv4 address assignment, dynamic if empty.

84

6 Classes (interfaces)

6.41 IDHCPServer

The IDHCPServer interface represents the VirtualBox DHCP server configuration.
To enumerate all the DHCP servers on the host, use the IVirtualBox::DHCPServers[] attribute.

6.41.1 Attributes
6.41.1.1 eventSource (read-only)

IEventSource IDHCPServer::eventSource

6.41.1.2 enabled (read/write)

boolean IDHCPServer::enabled

specifies if the DHCP server is enabled

6.41.1.3 IPAddress (read-only)

wstring IDHCPServer::IPAddress

specifies server IP

6.41.1.4 networkMask (read-only)

wstring IDHCPServer::networkMask

specifies server network mask

6.41.1.5 networkName (read-only)

wstring IDHCPServer::networkName

specifies internal network name the server is used for

6.41.1.6 lowerlP (read-only)

wstring IDHCPServer::lowerIP

specifies from IP address in server address range

6.41.1.7 upperIP (read-only)

wstring IDHCPServer: :upperIP

specifies to IP address in server address range

6.41.1.8 globalConfig (read-only)

IDHCPGlobalConfig IDHCPServer::globalConfig

Global configuration that applies to all clients.

6.41.1.9 groupConfigs (read-only)

IDHCPGroupConfig IDHCPServer::groupConfigs|[]

Configuration groups that applies to selected clients, selection is flexible.

85

6 Classes (interfaces)

6.41.1.10 individualConfigs (read-only)

IDHCPIndividualConfig IDHCPServer::individualConfigs[]

Individual NIC configurations either by MAC address or VM + NIC number.

6.41.2 findLeaseByMAC

void IDHCPServer::findLeaseByMAC(
[in] wstring mac,
[in] long type,
[out] wstring address,
[out] wstring state,
[out] long long issued,
[out] long long expire)

mac The MAC address to look up.

type Reserved, MBZ.

address The assigned address.

state The lease state.

issued Timestamp of when the lease was issued, in seconds since 1970-01-01 UTC.

expire Timestamp of when the lease expires/expired, in seconds since 1970-01-01 UTC.

Queries the persistent lease database by MAC address.

This is handy if the host wants to connect to a server running inside a VM on a host only
network.

If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: If MAC address not in the database.

e VBOX_E_FILE_ERROR: If not able to read the lease database file.

6.41.3 getConfig

IDHCPConfig IDHCPServer::getConfig(
[in] DHCPConfigScope scope,
[in] wstring name,
[in] unsigned long slot,
[in] boolean mayAdd)

scope The kind of configuration being sought or added.

name Meaning depends on the scope: - Ignored when the scope is Global. - A VM name or
UUID for MachineNIC. - A MAC address for MAC. - A group name for Group.

slot The NIC slot when scope is set to MachineNIC, must be zero for all other scope values.

mayAdd Set to TRUE if the configuration should be added if not found. If set to FALSE the
method will fail with VBOX_E_OBJECT NOT_FOUND.

Gets or adds a configuration.

86

6 Classes (interfaces)

6.41.4 restart

void IDHCPServer::restart()

Restart running DHCP server process.

If this method fails, the following error codes may be reported:

e E FAIL: Failed to restart the process.

6.41.5 setConfiguration

void IDHCPServer::setConfiguration(
[in] wstring IPAddress,
[in] wstring networkMask,
[in] wstring FromIPAddress,
[in] wstring ToIPAddress)

IPAddress server IP address

networkMask server network mask

FromIPAddress server From IP address for address range
TolPAddress server To IP address for address range

configures the server

If this method fails, the following error codes may be reported:

e E_INVALIDARG: invalid configuration supplied

6.41.6 start

void IDHCPServer::start(
[in] wstring trunkName,
[in] wstring trunkType)

trunkName Name of internal network trunk.
trunkType Type of internal network trunk.

Starts DHCP server process.

If this method fails, the following error codes may be reported:

e E_FAIL: Failed to start the process.

6.41.7 stop

void IDHCPServer::stop()

Stops DHCP server process.

If this method fails, the following error codes may be reported:

e E_FAIL: Failed to stop the process.

6.42 IDataStream

The IDataStream interface is used to retrieve a data stream.

IMediumIO::convertToStream().

87

It is returned by

6 Classes (interfaces)

6.42.1 Attributes
6.42.1.1 readSize (read-only)

unsigned long IDataStream::readSize

Recommended size of a read. Requesting a larger read may be possible in certain situations,
but it is not guaranteed.

6.42.2 read

octet[] IDataStream::read(
[in] unsigned long size,
[in] unsigned long timeoutMS)

size How many bytes to try read.

timeoutMS Timeout (in ms) for limiting the wait time for data to be available. Pass O for an
infinite timeout.

Read data from the stream.
If this method fails, the following error codes may be reported:

e VBOX_E_TIMEOUT: Waiting time has expired.

6.43 IDirectory

Abstract parent interface for directories handled by VirtualBox.

6.43.1 Attributes
6.43.1.1 directoryName (read-only)

wstring IDirectory::directoryName
The path specified when opening the directory.
6.43.1.2 eventSource (read-only)
IEventSource IDirectory::eventSource
Event source for directory events.
6.43.1.3 filter (read-only)
wstring IDirectory::filter
Directory listing filter to (specified when opening the directory).
6.43.1.4 id (read-only)
unsigned long IDirectory::id

The ID VirtualBox internally assigned to the open directory.

88

6 Classes (interfaces)

6.43.1.5 status (read-only)

DirectoryStatus IDirectory::status

Current directory status.

6.43.2 close

void IDirectory::close()

Closes this directory. After closing operations like reading the next directory entry will not be
possible anymore.

6.43.3 list

IFsObjInfo[] IDirectory::list(
[in] unsigned long maxEntries)

maxEntries Maximum entries to return per call. The guest might decide to return less than the
given maximum, depending on the guest OS.

Lists directory entries of this directory.
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: No more directory entries to read.

e VBOX_E_NOT_SUPPORTED: Method not supported by installed Guest Additions.

6.43.4 read

IFsObjInfo IDirectory::read()

Reads the next directory entry of this directory.
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: No more directory entries to read.

6.43.5 rewind

void IDirectory::rewind()

Rewinds the directory reading.

6.44 IDisplay

The IDisplay interface represents the virtual machine’s display.

The object implementing this interface is contained in each IConsole::display attribute and
represents the visual output of the virtual machine.

The virtual display supports pluggable output targets represented by the IFramebuffer inter-
face. Examples of the output target are a window on the host computer or an RDP session’s
display on a remote computer.

89

6 Classes (interfaces)

6.44.1 Attributes
6.44.1.1 guestScreenLayout (read-only)
IGuestScreenInfo IDisplay::guestScreenLayout|]

Layout of the guest screens.

6.44.2 attachFramebuffer

uuid IDisplay::attachFramebuffer(
[in] unsigned long screenld,
[in] IFramebuffer framebuffer)

screenld
framebuffer

Sets the graphics update target for a screen.

6.44.3 completeVHWACommand

’ Note: This method is not supported in the web service.

void IDisplay::completeVHWACommand (
[in] [ptr] octet command)

command Pointer to VBOXVHWACMD containing the completed command.

Signals that the Video HW Acceleration command has completed.

6.44.4 createGuestScreeninfo

IGuestScreenInfo IDisplay::createGuestScreenInfo(
[in] unsigned long display,
[in] GuestMonitorStatus status,
[in] boolean primary,
[in] boolean changeOrigin,
[in] long originX,
[in] long originy,
[in] unsigned long width,
[in] unsigned long height,
[in] unsigned long bitsPerPixel)

display The number of the guest display.

status True, if this guest screen is enabled, False otherwise.

primary Whether this guest monitor must be primary.

changeOrigin True, if the origin of the guest screen should be changed, False otherwise.
originX The X origin of the guest screen.

originY The Y origin of the guest screen.

width The width of the guest screen.

height The height of the guest screen.

bitsPerPixel The number of bits per pixel of the guest screen.

Make a IGuestScreenInfo object with the provided parameters.

90

6 Classes (interfaces)

6.44.5 detachFramebuffer

void IDisplay::detachFramebuffer(
[in] unsigned long screenId,
[in] uuid id)

screenld

id

Removes the graphics updates target for a screen.

6.44.6 detachScreens

void IDisplay::detachScreens(
[in] long screenIds[])

screenlds

Unplugs monitors from the virtual graphics card.

6.44.7 drawToScreen

’ Note: This method is not supported in the web service.

void IDisplay::drawToScreen(
[in] unsigned long screenId,
[in] [ptr] octet address,
[in] unsigned long x,
[in] unsigned long vy,
[in] unsigned long width,
[in] unsigned long height)
screenld Monitor to take the screenshot from.
address Address to store the screenshot to
X Relative to the screen top left corner.
y Relative to the screen top left corner.

width Desired image width.

height Desired image height.
Draws a 32-bpp image of the specified size from the given buffer to the given point on the VM
display.

If this method fails, the following error codes may be reported:

e E_NOTIMPL: Feature not implemented.

e VBOX_E_IPRT_ERROR: Could not draw to screen.

91

6 Classes (interfaces)

6.44.8 getScreenResolution

void IDisplay::getScreenResolution(
[in] unsigned long screenId,
[out] unsigned long width,
[out] unsigned long height,
[out] unsigned long bitsPerPixel,
[out] long xOrigin,
[out] long yOrigin,
[out] GuestMonitorStatus guestMonitorStatus)

screenld

width

height

bitsPerPixel

xOrigin

yOrigin
guestMonitorStatus

Queries certain attributes such as display width, height, color depth and the X and Y origin for
a given guest screen.

The parameters x0rigin and yOrigin return the X and Y coordinates of the framebuffer’s
origin.

All return parameters are optional.

6.44.9 getVideoModeHint

void IDisplay::getVideoModeHint (
[in] unsigned long display,
[out] boolean enabled,
[out] boolean changeOrigin,
[out] long originX,
[out] long originyY,
[out] unsigned long width,
[out] unsigned long height,
[out] unsigned long bitsPerPixel)

display The number of the guest output to query.

enabled True if a monitor is connected, False otherwise.

changeOrigin True, if the position of the guest screen was specified, False otherwise.
originX The X origin of the guest screen.

originY The Y origin of the guest screen.

width The width of the monitor preferred mode.

height The height of the monitor preferred mode.

bitsPerPixel The number of bits per pixel of the monitor preferred mode.

92

6 Classes (interfaces)

Queries the monitor information for a given guest output. See setVideoModeHint. If no
monitor information has been set yet by a front-end the preferred mode values returned will be
zero.

@todo Rename this to getMonitorInfo for 7.0.

If this method fails, the following error codes may be reported:

e E_INVALIDARG: The display value is higher than the number of outputs.

6.44.10 invalidateAndUpdate

void IDisplay::invalidateAndUpdate()

Does a full invalidation of the VM display and instructs the VM to update it.
If this method fails, the following error codes may be reported:

e VBOX_E_IPRT_ERROR: Could not invalidate and update screen.

6.44.11 invalidateAndUpdateScreen

void IDisplay::invalidateAndUpdateScreen(
[in] unsigned long screenld)

screenld The guest screen to redraw.

Redraw the specified VM screen.

6.44.12 notifyHiDPIOutputPolicyChange

void IDisplay::notifyHiDPIOutputPolicyChange(
[in] boolean fUnscaledHiDPI)

fUnscaledHiDPI

Notify OpenGL HGCM host service about HiDPI monitor scaling policy change.

6.44.13 notifyScaleFactorChange

void IDisplay::notifyScaleFactorChange(
[in] unsigned long screenId,
[in] unsigned long u32ScaleFactorWMultiplied,
[in] unsigned long u32ScaleFactorHMultiplied)

screenld
u32ScaleFactorWMultiplied
u32ScaleFactorHMultiplied

Notify OpenGL HGCM host service about graphics content scaling factor change.

6.44.14 queryFramebuffer

IFramebuffer IDisplay::queryFramebuffer(
[in] unsigned long screenld)

screenld

Queries the graphics updates targets for a screen.

93

6 Classes (interfaces)

6.44.15 querySourceBitmap

’ Note: This method is not supported in the web service.

void IDisplay::querySourceBitmap(

[in] unsigned long screenld,

[out] IDisplaySourceBitmap displaySourceBitmap)
screenld
displaySourceBitmap

Obtains the guest screen bitmap parameters.

6.44.16 setScreenLayout

void IDisplay::setScreenlLayout(
[in] ScreenLayoutMode screenLayoutMode,
[in] IGuestScreenInfo guestScreenInfo[])
screenLayoutMode
guestScreeninfo

Set video modes for the guest screens.

6.44.17 setSeamlessMode

void IDisplay::setSeamlessMode (
[in] boolean enabled)

enabled

Enables or disables seamless guest display rendering (seamless desktop integration) mode.

Note: Calling this method has no effect if IGuest::getFacilityStatus() with facility
Seamless does not return Active.

6.44.18 setVideoModeHint

void IDisplay::setVideoModeHint (
[in] unsigned long display,
[in] boolean enabled,
[in] boolean changeOrigin,
[in] long originX,
[in] long originy,
[in] unsigned long width,
[in] unsigned long height,
[in] unsigned long bitsPerPixel,
[in] boolean notify)

display The number of the guest output to change.

enabled True if a monitor is connected, False otherwise.

94

6 Classes (interfaces)

changeOrigin True, if the position of the guest screen is specified, False otherwise.
originX The X origin of the guest screen.

originY The Y origin of the guest screen.

width The width of the guest screen.

height The height of the guest screen.

bitsPerPixel The number of bits per pixel of the guest screen.

notify Whether the guest should be notified of the change. Normally this is wished, but it might
not be when re-setting monitor information from the last session (no hotplug happened,
as it is still the same virtual monitor). Might also be useful if several monitors are to
be changed at once, but this would not reflect physical hardware well, and we also have
setScreenLayout for that.

Changes the monitor information reported by a given output of the guest graphics device. This
information can be read by the guest if suitable drivers and driver tools are available, including
but not limited to those in the Guest Additions. The guest will receive monitor hotplug notifica-
tion when the monitor information is changed, and the information itself will be available to the
guest until the next change. The information should not be resent if the guest does not resize in
response. The guest might have chosen to ignore the change, or the resize might happen later
when a suitable driver is started.

Specifying 0 for either width, height or bitsPerPixel parameters means that the corre-
sponding values should be taken from the current video mode (i.e. left unchanged).

@todo Rename this to setMonitorInfo for 7.0.

If this method fails, the following error codes may be reported:

e E_INVALIDARG: The display value is higher then the number of outputs.

6.44.19 takeScreenShot

Note: This method is not supported in the web service.

void IDisplay::takeScreenShot(
[in] unsigned long screenId,
[in] [ptr] octet address,
[in] unsigned long width,
[in] unsigned long height,
[in] BitmapFormat bitmapFormat)

screenld
address
width

height
bitmapFormat

Takes a screen shot of the requested size and format and copies it to the buffer allocated by the
caller and pointed to by address. The buffer size must be enough for a 32 bits per pixel bitmap,
i.e. width * height * 4 bytes.

95

6 Classes (interfaces)

Note: This API can be used only locally by a VM process through the COM/XPCOM
C++ API as it requires pointer support. It is not available for scripting languages,
Java or any webservice clients. Unless you are writing a new VM frontend use
takeScreenShotToArray().

If this method fails, the following error codes may be reported:

e VBOX_E_NOT_SUPPORTED: Current screen configuration does not support taking a screen
shot (typically because it is 0x0 in size).

6.44.20 takeScreenShotToArray

octet[] IDisplay::takeScreenShotToArray(
[in] unsigned long screenId,
[in] unsigned long width,
[in] unsigned long height,
[in] BitmapFormat bitmapFormat)

screenld The guest monitor to take screenshot from.
width Desired image width.

height Desired image height.

bitmapFormat The requested format.

Takes a guest screen shot of the requested size and format and returns it as an array of bytes.

6.44.21 viewportChanged

void IDisplay::viewportChanged(
[in] unsigned long screenId,
[in] unsigned long x,
[in] unsigned long vy,
[in] unsigned long width,
[in] unsigned long height)

screenld Monitor to take the screenshot from.
x Framebuffer x offset.

y Framebulffer y offset.

width Viewport width.

height Viewport height.

Signals that framebuffer window viewport has changed.
If this method fails, the following error codes may be reported:

e E_INVALIDARG: The specified viewport data is invalid.

6.45 IDisplaySourceBitmap

’ Note: This interface is not supported in the web service.

96

6 Classes (interfaces)

6.45.1 Attributes
6.45.1.1 screenld (read-only)

unsigned long IDisplaySourceBitmap::screenld

6.45.2 queryBitmaplinfo

’ Note: This method is not supported in the web service.

void IDisplaySourceBitmap::queryBitmapInfo(
[out] [ptr] octet address,
[out] unsigned long width,
[out] unsigned long height,
[out] unsigned long bitsPerPixel,
[out] unsigned long bytesPerLine,
[out] BitmapFormat bitmapFormat)

address
width

height
bitsPerPixel
bytesPerLine

bitmapFormat

Information about the screen bitmap.

6.46 IDnDBase

Base abstract interface for drag’'n drop.

6.46.1 Attributes
6.46.1.1 formats (read-only)

wstring IDnDBase::formats[]

Returns all supported drag'n drop formats.

6.46.2 addFormats

void IDnDBase::addFormats(
[in] wstring formats[])

formats Collection of formats to add.

Adds MIME / Content-type formats to the supported formats.

97

6 Classes (interfaces)

6.46.3 isFormatSupported

boolean IDnDBase::isFormatSupported(
[in] wstring format)

format Format to check for.

Checks if a specific drag’n drop MIME / Content-type format is supported.

6.46.4 removeFormats

void IDnDBase: :removeFormats(
[in] wstring formats[])

formats Collection of formats to remove.

Removes MIME / Content-type formats from the supported formats.

6.47 IDnDModeChangedEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

Notification when the drag’n drop mode changes.

6.47.1 Attributes
6.47.1.1 dndMode (read-only)
DnDMode IDnDModeChangedEvent: :dndMode

The new drag’'n drop mode.

6.48 IDnDSource (IDnDBase)

Note: This interface extends IDnDBase and therefore supports all its methods and
attributes as well.

Abstract interface for handling drag’'n drop sources.

6.48.1 draglsPending

DnDAction IDnDSource::dragIsPending(
[in] unsigned long screenId,
[out] wstring formats[],
[out] DnDAction allowedActions[])

screenld The screen ID where the drag and drop event occurred.
formats On return the supported mime types.
allowedActions On return the actions which are allowed.

Ask the source if there is any drag and drop operation pending. If no drag and drop operation
is pending currently, DnDAction_Ignore is returned.
If this method fails, the following error codes may be reported:

e VBOX_E_VM_ERROR: VMM device is not available.

98

6 Classes (interfaces)

6.48.2 drop

IProgress IDnDSource::drop(

[in] wstring format,

[in] DnDAction action)
format The mime type the data must be in.
action The action to use.

Informs the source that a drop event occurred for a pending drag and drop operation.
If this method fails, the following error codes may be reported:

e VBOX_E_VM_ERROR: VMM device is not available.

6.48.3 receiveData

octet[] IDnDSource::receiveDatal()

Receive the data of a previously drag and drop event from the source.
If this method fails, the following error codes may be reported:

e VBOX_E_VM_ERROR: VMM device is not available.

6.49 IDnDTarget (IDnDBase)

Note: This interface extends IDnDBase and therefore supports all its methods and
attributes as well.

Abstract interface for handling drag’n drop targets.

6.49.1 cancel

boolean IDnDTarget::cancel()

Requests cancelling the current operation. The target can veto the request in case the operation
is not cancelable at the moment.
If this method fails, the following error codes may be reported:

e VBOX_E_VM_ERROR: VMM device is not available.

6.49.2 drop

DnDAction IDnDTarget: :drop(
[in] unsigned long screenId,
[in] unsigned long x,
[in] unsigned long vy,
[in] DnDAction defaultAction,
[in] DnDAction allowedActions[],
[in] wstring formats[],
[out] wstring format)

screenld The screen ID where the Drag and Drop event occurred.

X X-position of the event.

99

6 Classes (interfaces)

y Y-position of the event.

defaultAction The default action to use.
allowedActions The actions which are allowed.
formats The supported MIME types.

format The resulting format of this event.

Informs the target about a drop event.
If this method fails, the following error codes may be reported:

e VBOX_E_VM_ERROR: VMM device is not available.

6.49.3 enter

DnDAction IDnDTarget::enter(
[in] unsigned long screenId,
[in] unsigned long vy,
[in] unsigned long x,
[in] DnDAction defaultAction,
[in] DnDAction allowedActions[],
[in] wstring formats[])

screenld The screen ID where the drag and drop event occurred.
y Y-position of the event.

X X-position of the event.

defaultAction The default action to use.

allowedActions The actions which are allowed.

formats The supported MIME types.

Informs the target about a drag and drop enter event.
If this method fails, the following error codes may be reported:

e VBOX_E_VM_ERROR: VMM device is not available.

6.49.4 leave

void IDnDTarget::leave(
[in] unsigned long screenId)

screenld The screen ID where the drag and drop event occurred.

Informs the target about a drag and drop leave event.
If this method fails, the following error codes may be reported:

e VBOX_E_VM_ERROR: VMM device is not available.

100

6 Classes (interfaces)

6.49.5 move

DnDAction IDnDTarget: :move(
[in] unsigned long screenId,
[in] unsigned long x,
[in] unsigned long vy,
[in] DnDAction defaultAction,
[in] DnDAction allowedActions[],
[in] wstring formats[])

screenld The screen ID where the drag and drop event occurred.
X X-position of the event.

y Y-position of the event.

defaultAction The default action to use.

allowedActions The actions which are allowed.

formats The supported MIME types.

Informs the target about a drag and drop move event.
If this method fails, the following error codes may be reported:

e VBOX_E_VM_ERROR: VMM device is not available.

6.49.6 sendData

IProgress IDnDTarget::sendData(
[in] unsigned long screenId,
[in] wstring format,
[in] octet data[])

screenld The screen ID where the drag and drop event occurred.
format The MIME type the data is in.

data The actual data.

Initiates sending data to the target.
If this method fails, the following error codes may be reported:

e VBOX_E_VM_ERROR: VMM device is not available.

6.50 IEmulatedUSB

Manages emulated USB devices.

6.50.1 Attributes
6.50.1.1 webcams (read-only)

wstring IEmulatedUSB::webcams][]

Lists attached virtual webcams.

101

6 Classes (interfaces)

6.50.2 webcamAttach

void IEmulatedUSB: :webcamAttach(
[in] wstring path,
[in] wstring settings)

path The host path of the capture device to use.

settings Optional settings.

Attaches the emulated USB webcam to the VM, which will use a host video capture device.

6.50.3 webcamDetach

void IEmulatedUSB: :webcamDetach(
[in] wstring path)

path The host path of the capture device to detach.

Detaches the emulated USB webcam from the VM

6.51 IEvent

Abstract parent interface for VirtualBox events. Actual events will typically implement a more
specific interface which derives from this (see below).

Introduction to VirtualBox events

Generally speaking, an event (represented by this interface) signals that something happened,
while an event listener (see IEventListener) represents an entity that is interested in certain
events. In order for this to work with unidirectional protocols (i.e. web services), the concepts
of passive and active listener are used.

Event consumers can register themselves as listeners, providing an array of events they are in-
terested in (see IEventSource::registerListener()). When an event triggers, the listener is notified
about the event. The exact mechanism of the notification depends on whether the listener was
registered as an active or passive listener:

e An active listener is very similar to a callback: it is a function invoked by the API. As
opposed to the callbacks that were used in the API before VirtualBox 4.0 however, events
are now objects with an interface hierarchy.

e Passive listeners are somewhat trickier to implement, but do not require a client func-
tion to be callable, which is not an option with scripting languages or web service
clients. Internally the IEventSource implementation maintains an event queue for each
passive listener, and newly arrived events are put in this queue. When the listener calls
[EventSource::getEvent(), first element from its internal event queue is returned. When
the client completes processing of an event, the IEventSource::eventProcessed() function
must be called, acknowledging that the event was processed. It supports implementing
waitable events. On passive listener unregistration, all events from its queue are auto-
acknowledged.

Waitable events are useful in situations where the event generator wants to track delivery or
a party wants to wait until all listeners have completed the event. A typical example would be a
vetoable event (see [VetoEvent) where a listeners might veto a certain action, and thus the event
producer has to make sure that all listeners have processed the event and not vetoed before
taking the action.

A given event may have both passive and active listeners at the same time.

Using events

102

6 Classes (interfaces)

Any VirtualBox object capable of producing externally visible events provides an eventSource
read-only attribute, which is of the type I[EventSource. This event source object is notified by
VirtualBox once something has happened, so consumers may register event listeners with this
event source. To register a listener, an object implementing the IEventListener interface must
be provided. For active listeners, such an object is typically created by the consumer, while
for passive listeners IEventSource::createListener() should be used. Please note that a listener
created with IEventSource::createListener() must not be used as an active listener.

Once created, the listener must be registered to listen for the desired events (see
[EventSource::registerListener()), providing an array of VBoxEventType enums. Those elements
can either be the individual event IDs or wildcards matching multiple event IDs.

After registration, the callback’s IEventListener::handleEvent() method is called automatically
when the event is triggered, while passive listeners have to call IEventSource::getEvent() and
IEventSource::eventProcessed() in an event processing loop.

The IEvent interface is an abstract parent interface for all such VirtualBox events coming in. As
a result, the standard use pattern inside [EventListener::handleEvent() or the event processing
loop is to check the type attribute of the event and then cast to the appropriate specific interface
using QueryInterface().

6.51.1 Attributes
6.51.1.1 type (read-only)

VBoxEventType IEvent::type

Event type.

6.51.1.2 source (read-only)

IEventSource IEvent::source

Source of this event.

6.51.1.3 waitable (read-only)

boolean IEvent::waitable

If we can wait for this event being processed. If false, waitProcessed() returns immediately,
and setProcessed() doesn’t make sense. Non-waitable events are generally better performing, as
no additional overhead associated with waitability imposed. Waitable events are needed when
one need to be able to wait for particular event processed, for example for vetoable changes, or
if event refers to some resource which need to be kept immutable until all consumers confirmed
events.

6.51.2 setProcessed

void IEvent::setProcessed()

Internal method called by the system when all listeners of a particular event have called
IEventSource::eventProcessed (). This should not be called by client code.

6.51.3 waitProcessed

boolean IEvent::waitProcessed(
[in] long timeout)

timeout Maximum time to wait for event processing, in ms; 0 = no wait, -1 = indefinite wait.

103

6 Classes (interfaces)

Wait until time outs, or this event is processed. Event must be waitable for this operation to
have described semantics, for non-waitable returns true immediately.

6.52 IEventListener

Event listener. An event listener can work in either active or passive mode, depending on the
way it was registered. See IEvent for an introduction to VirtualBox event handling.

6.52.1 handleEvent

void IEventListener::handleEvent
[in] IEvent event)

event Event available.

Handle event callback for active listeners. It is not called for passive listeners. After
calling handleEvent() on all active listeners and having received acknowledgement from all
passive listeners via IEventSource::eventProcessed(), the event is marked as processed and
[Event::waitProcessed () will return immediately.

6.53 IEventSource

Event source. Generally, any object which could generate events can be an event source, or aggre-
gate one. To simplify using one-way protocols such as webservices running on top of HTTP(S),
an event source can work with listeners in either active or passive mode. In active mode it is
up to the IEventSource implementation to call IEventListener::handleEvent(), in passive mode
the event source keeps track of pending events for each listener and returns available events on
demand.

See IEvent for an introduction to VirtualBox event handling.

6.53.1 createAggregator

IEventSource IEventSource::createAggregator(
[in] IEventSource subordinates[])

subordinates Subordinate event source this one aggregates.

Creates an aggregator event source, collecting events from multiple sources. This way a single
listener can listen for events coming from multiple sources, using a single blocking getEvent()
on the returned aggregator.

6.53.2 createListener

IEventListener IEventSource::createlListener()

Creates a new listener object, useful for passive mode.

6.53.3 eventProcessed

void IEventSource::eventProcessed(
[in] IEventListener listener,
[in] IEvent event)

listener Which listener processed event.

104

6 Classes (interfaces)

event Which event.

Must be called for waitable events after a particular listener finished its event processing.
When all listeners of a particular event have called this method, the system will then call
IEvent::setProcessed().

6.53.4 fireEvent

boolean IEventSource::fireEvent(
[in] IEvent event,
[in] long timeout)

event Event to deliver.

timeout Maximum time to wait for event processing (if event is waitable), in ms; 0 = no wait,
-1 = indefinite wait.

Fire an event for this source.

6.53.5 getEvent

IEvent IEventSource::getEvent(
[in] IEventListener listener,
[in] long timeout)

listener Which listener to get data for.

timeout Maximum time to wait for events, in ms; 0 = no wait, -1 = indefinite wait.

Get events from this peer’s event queue (for passive mode). Calling this method regularly is
required for passive event listeners to avoid system overload; see registerListener() for details.
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: Listener is not registered, or autounregistered.

6.53.6 registerListener

void IEventSource::registerListener(
[in] IEventListener listener,
[in] VBoxEventType interesting[],
[in] boolean active)

listener Listener to register.

interesting Event types listener is interested in. One can use wildcards like - Any to specify
wildcards, matching more than one event.

active Which mode this listener is operating in. In active mode, IEventListener::handleEvent()
is called directly. In passive mode, an internal event queue is created for this this
IEventListener. For each event coming in, it is added to queues for all interested
registered passive listeners. It is then up to the external code to call the listener’s
IEventListener::handleEvent() method. When done with an event, the external code must
call eventProcessed().

Register an event listener.

105

6 Classes (interfaces)

Note: To avoid system overload, the VirtualBox server process checks if pas-
sive event listeners call getEvent() frequently enough. In the current implemen-
tation, if more than 500 pending events are detected for a passive event listener,
it is forcefully unregistered by the system, and further getEvent() calls will return
VBOX_E_OBJECT_NOT_FOUND.

6.53.7 unregisterListener

void IEventSource::unregisterListener(
[in] IEventListener listener)

listener Listener to unregister.

Unregister an event listener. If listener is passive, and some waitable events are still in queue
they are marked as processed automatically.

6.54 IEventSourceChangedEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

Notification when an event source state changes (listener added or removed).

6.54.1 Attributes
6.54.1.1 listener (read-only)

IEventListener IEventSourceChangedEvent::listener

Event listener which has changed.

6.54.1.2 add (read-only)

boolean IEventSourceChangedEvent::add

Flag whether listener was added or removed.

6.55 IExtPack (IExtPackBase)

’ Note: This interface is not supported in the web service.

Note: This interface extends IExtPackBase and therefore supports all its methods and
attributes as well.

Interface for querying information about an extension pack as well as accessing COM objects
within it.

106

6 Classes (interfaces)

6.55.1 queryObject

$unknown IExtPack::queryObject(
[in] wstring objUuid)

objUuid The object ID. What exactly this is

Queries the TUnknown interface to an object in the extension pack main module. This allows
plug-ins and others to talk directly to an extension pack.

6.56 IExtPackBase

’ Note: This interface is not supported in the web service.

Interface for querying information about an extension pack as well as accessing COM objects
within it.

6.56.1 Attributes
6.56.1.1 name (read-only)

wstring IExtPackBase::name

The extension pack name. This is unique.

6.56.1.2 description (read-only)

wstring IExtPackBase::description

The extension pack description.

6.56.1.3 version (read-only)

wstring IExtPackBase::version

The extension pack version string. This is restricted to the dotted version number and op-
tionally a build indicator. No tree revision or tag will be included in the string as those
things are available as separate properties. An optional publisher tag may be present like for
IVirtualBox::version.

Examples: “1.2.3”, “1.2.3 BETA1” and “1.2.3_RC2".

6.56.1.4 revision (read-only)

unsigned long IExtPackBase::revision

The extension pack internal revision number.

6.56.1.5 edition (read-only)

wstring IExtPackBase::edition

Edition indicator. This is usually empty.
Can for instance be used to help distinguishing between two editions of the same extension
pack where only the license, service contract or something differs.

107

6 Classes (interfaces)

6.56.1.6 VRDEModule (read-only)

wstring IExtPackBase::VRDEModule

The name of the VRDE module if the extension pack sports one.

6.56.1.7 CryptoModule (read-only)

wstring IExtPackBase::CryptoModule

The name of the crypto module if the extension pack sports one. This module is required for
full VM encryption.

6.56.1.8 plugins (read-only)

IExtPackPlugIn IExtPackBase::plugIns|[]

Note: This attribute is not supported in the web service.

Plug-ins provided by this extension pack.

6.56.1.9 usable (read-only)

boolean IExtPackBase::usable

Indicates whether the extension pack is usable or not.
There are a number of reasons why an extension pack might be unusable, typical examples
would be broken installation/file or that it is incompatible with the current VirtualBox version.

6.56.1.10 whyUnusable (read-only)

wstring IExtPackBase::whyUnusable

String indicating why the extension pack is not usable. This is an empty string if usable and
always a non-empty string if not usable.

6.56.1.11 showLicense (read-only)

boolean IExtPackBase::showlLicense

Whether to show the license before installation

6.56.1.12 license (read-only)

wstring IExtPackBase::license

The default HTML license text for the extension pack. Same as calling queryLicense with
preferredLocale and preferredLanguage as empty strings and format set to html.

108

6 Classes (interfaces)

6.56.2 queryLicense

wstring IExtPackBase::querylLicense(
[in] wstring preferredLocale,
[in] wstring preferredLanguage,
[in] wstring format)

preferredLocale The preferred license locale. Pass an empty string to get the default license.

preferredLanguage The preferred license language. Pass an empty string to get the default
language for the locale.

format The license format: html, rtf or txt. If a license is present there will always be an HTML
of it, the rich text format (RTF) and plain text (txt) versions are optional. If

Full feature version of the license attribute.

6.57 IExtPackFile (IExtPackBase)

’ Note: This interface is not supported in the web service.

Note: This interface extends [ExtPackBase and therefore supports all its methods and
attributes as well.

Extension pack file (aka tarball, .vbox-extpack) representation returned by
[ExtPackManager::openExtPackFile(). This provides the base extension pack information
with the addition of the file name.

6.57.1 Attributes
6.57.1.1 filePath (read-only)
wstring IExtPackFile::filePath

The path to the extension pack file.

6.57.2 install

IProgress IExtPackFile::install(
[in] boolean replace,
[in] wstring displayInfo)

replace Set this to automatically uninstall any existing extension pack with the same name as
the one being installed.

displaylnfo Platform specific display information. Reserved for future hacks.

Install the extension pack.

6.58 IExtPackinstalledEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

Extension pack installed event.

109

6 Classes (interfaces)

6.58.1 Attributes
6.58.1.1 name (read-only)

wstring IExtPackInstalledEvent::name

Name of the extension pack.

6.59 IExtPackManager

’ Note: This interface is not supported in the web service.

Interface for managing VirtualBox Extension Packs.

@todo Describe extension packs, how they are managed and how to create one.
6.59.1 Attributes
6.59.1.1 installedExtPacks (read-only)

IExtPack IExtPackManager::installedExtPacks][]

Note: This attribute is not supported in the web service.

List of the installed extension packs.

6.59.2 cleanup

void IExtPackManager::cleanup()

Cleans up failed installs and uninstalls

6.59.3 find

Note: This method is not supported in the web service.

IExtPack IExtPackManager::find(
[in] wstring name)

name The name of the extension pack to locate.

Returns the extension pack with the specified name if found.
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: No extension pack matching name was found.

6.59.4 isExtPackUsable

boolean IExtPackManager::isExtPackUsable(
[in] wstring name)

name The name of the extension pack to check for.

Check if the given extension pack is loaded and usable.

110

6 Classes (interfaces)

6.59.5 openExtPackFile

’ Note: This method is not supported in the web service.

IExtPackFile IExtPackManager: :openExtPackFile(
[in] wstring path)

path The path of the extension pack tarball. This can optionally be followed by a “::SHA-
256=hex-digit” of the tarball.

Attempts to open an extension pack file in preparation for installation.

6.59.6 queryAllPluginsForFrontend

wstring[] IExtPackManager::queryAllPlugInsForFrontend(
[in] wstring frontendName)

frontendName The name of the frontend or component.

Gets the path to all the plug-in modules for a given frontend.
This is a convenience method that is intended to simplify the plug-in loading process for a
frontend.

6.59.7 uninstall

IProgress IExtPackManager::uninstall(
[in] wstring name,
[in] boolean forcedRemoval,
[in] wstring displayInfo)
name The name of the extension pack to uninstall.

forcedRemoval Forced removal of the extension pack. This means that the uninstall hook will
not be called.

displaylnfo Platform specific display information. Reserved for future hacks.

Uninstalls an extension pack, removing all related files.

6.60 IExtPackPlugin

’ Note: This interface is not supported in the web service.

Interface for keeping information about a plug-in that ships with an extension pack.

6.60.1 Attributes
6.60.1.1 name (read-only)

wstring IExtPackPlugIn::name

The plug-in name.

111

6 Classes (interfaces)

6.60.1.2 description (read-only)

wstring IExtPackPlugIn::description

The plug-in description.

6.60.1.3 frontend (read-only)

wstring IExtPackPlugIn::frontend

The name of the frontend or component name this plug-in plugs into.

6.60.1.4 modulePath (read-only)

wstring IExtPackPlugIn::modulePath

The module path.

6.61 IExtPackUninstalledEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

Extension pack uninstalled event.

6.61.1 Attributes
6.61.1.1 name (read-only)

wstring IExtPackUninstalledEvent::name

Name of the extension pack.

6.62 IExtraDataCanChangeEvent (IVetoEvent)

Note: This interface extends IVetoEvent and therefore supports all its methods and
attributes as well.

Notification when someone tries to change extra data for either the given machine or (if null)
global extra data. This gives the chance to veto against changes.

6.62.1 Attributes
6.62.1.1 machineld (read-only)

uuid IExtraDataCanChangeEvent::machineld

ID of the machine this event relates to. Null for global extra data changes.

6.62.1.2 key (read-only)

wstring IExtraDataCanChangeEvent::key

Extra data key that has changed.

112

6 Classes (interfaces)

6.62.1.3 value (read-only)

wstring IExtraDataCanChangeEvent::value

Extra data value for the given key.

6.63 IExtraDataChangedEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

Notification when machine specific or global extra data has changed.

6.63.1 Attributes
6.63.1.1 machineld (read-only)

uuid IExtraDataChangedEvent::machineld

ID of the machine this event relates to. Null for global extra data changes.

6.63.1.2 key (read-only)

wstring IExtraDataChangedEvent::key

Extra data key that has changed.

6.63.1.3 value (read-only)

wstring IExtraDataChangedEvent::value

Extra data value for the given key.

6.64 IFile

Abstract parent interface for files handled by VirtualBox.

6.64.1 Attributes
6.64.1.1 eventSource (read-only)

IEventSource IFile::eventSource

Event source for file events.

6.64.1.2 id (read-only)
unsigned long IFile::id

The ID VirtualBox internally assigned to the open file.

6.64.1.3 initialSize (read-only)
long long IFile::initialSize

The initial size in bytes when opened.

113

6 Classes (interfaces)

6.64.1.4 offset (read-only)

long long IFile::offset

The current file position.

The file current position always applies to the read() method, which updates it upon return.
Same goes for the write() method except when accessMode is AppendOnly or AppendRead,
where it will always write to the end of the file and will leave this attribute unchanged.

The seek() is used to change this attribute without transfering any file data like read and write
does.

Note: This will not always be correct with older Guest Additions (version 5.2.30 and
earlier, as well as versions 6.0.0 thru 6.0.8) after a calling readAt() or writeAt(), or
after calling write() on a file in append mode. The correct file offset can be obtained
using seek().

6.64.1.5 status (read-only)

FileStatus IFile::status

Current file status.

6.64.1.6 filename (read-only)

wstring IFile::filename

Full path of the actual file name of this file.

6.64.1.7 creationMode (read-only)

unsigned long IFile::creationMode
The UNIX-style creation mode specified when opening the file.
6.64.1.8 openAction (read-only)
FileOpenAction IFile::openAction
The opening action specified when opening the file.
6.64.1.9 accessMode (read-only)
FileAccessMode IFile::accessMode

The file access mode.

6.64.2 close

void IFile::close()

Closes this file. After closing operations like reading data, writing data or querying information
will not be possible anymore.

114

6 Classes (interfaces)

6.64.3 queryinfo

IFsObjInfo IFile::queryInfo()

Queries information about this file.

6.64.4 querySize

long long IFile::querySize()

Queries the current file size.

6.64.5 read

octet[] IFile::read(
[in] unsigned long toRead,
[in] unsigned long timeoutMS)

toRead Number of bytes to read.

timeoutMS Timeout (in ms) to wait for the operation to complete. Pass O for an infinite timeout.

Reads data from this file.
The file current position (offset) is updated on success.

6.64.6 readAt

octet[] IFile::readAt(
[in] long long offset,
[in] unsigned long toRead,
[in] unsigned long timeoutMS)

offset Offset in bytes to start reading.
toRead Number of bytes to read.

timeoutMS Timeout (in ms) to wait for the operation to complete. Pass O for an infinite timeout.

Reads data from an offset of this file.
The file current position (offset) is updated on success.

6.64.7 seek

long long IFile::seek(
[in] long long offset,
[in] FileSeekOrigin whence)

offset Offset to seek relative to the position specified by whence.

whence One of the FileSeekOrigin seek starting points.

Changes the current file position of this file.
The file current position always applies to the read() method. Same for the write() method it
except when the accessMode is AppendOnly or AppendRead.

115

6 Classes (interfaces)

6.64.8 setACL

void IFile::setACL(
[in] wstring acl,
[in] unsigned long mode)

acl The ACL specification string. To-be-defined.

mode UNIX-style mode mask to wuse if acl is empty As mention in
IGuestSession::directoryCreate() this is realized on a best effort basis and the exact
behavior depends on the Guest OS.

Sets the ACL of this file.
If this method fails, the following error codes may be reported:

e E_NOTIMPL: The method is not implemented yet.

6.64.9 setSize

void IFile::setSize(
[in] long long size)

size The new file size.

Changes the file size.

6.64.10 write

unsigned long IFile::write(
[in] octet datal[],
[in] unsigned long timeoutMS)

data Array of bytes to write. The size of the array also specifies how much to write.

timeoutMS Timeout (in ms) to wait for the operation to complete. Pass O for an infinite timeout.

Writes bytes to this file.
The file current position (offset) is updated on success.

6.64.11 writeAt

unsigned long IFile::writeAt(
[in] long long offset,
[in] octet datal],
[in] unsigned long timeoutMS)

offset Offset in bytes to start writing. If the file was opened with the accessMode set to

AppendOnly or AppendRead, the offset is ignored and the write always goes to the end
of the file.

data Array of bytes to write. The size of the array also specifies how much to write.

timeoutMS Timeout (in ms) to wait for the operation to complete. Pass O for an infinite timeout.

Writes bytes at a certain offset to this file.
The file current position (offset) is updated on success.

116

6 Classes (interfaces)

6.65 IFirmwareSettings

The IFirmwareSettings interface represents firmware settings of the virtual machine. This is used
only in the IMachine::firmwareSettings attribute.

6.65.1 Attributes
6.65.1.1 firmwareType (read/write)

FirmwareType IFirmwareSettings::firmwareType

Type of firmware (such as legacy BIOS or EFI), used for initial bootstrap in this VM.

6.65.1.2 logoFadeln (read/write)

boolean IFirmwareSettings::logoFadeln

Fade in flag for BIOS logo animation.

6.65.1.3 logoFadeOut (read/write)

boolean IFirmwareSettings::logoFadeOut

Fade out flag for BIOS logo animation.

6.65.1.4 logoDisplayTime (read/write)

unsigned long IFirmwareSettings::logoDisplayTime

BIOS logo display time in milliseconds (0 = default).

6.65.1.5 logolmagePath (read/write)

wstring IFirmwareSettings::logoImagePath

Local file system path for external BIOS splash image. Empty string means the default image
is shown on boot.

6.65.1.6 bootMenuMode (read/write)

FirmwareBootMenuMode IFirmwareSettings::bootMenuMode
Mode of the firmware boot device menu.

6.65.1.7 ACPIEnabled (read/write)

boolean IFirmwareSettings::ACPIEnabled
ACPI support flag.

6.65.1.8 IOAPICEnabled (read/write)

boolean IFirmwareSettings::IOAPICEnabled

I/0-APIC support flag. If set, VirtualBox will provide an I/0-APIC and support IRQs above 15.

117

6 Classes (interfaces)

6.65.1.9 APICMode (read/write)

APICMode IFirmwareSettings::APICMode

APIC mode to set up by the firmware.

6.65.1.10 timeOffset (read/write)

long long IFirmwareSettings::timeOffset

Offset in milliseconds from the host system time. This allows for guests running with a dif-
ferent system date/time than the host. It is equivalent to setting the system date/time in the
BIOS except it is not an absolute value but a relative one. Guest Additions time synchronization
honors this offset.

6.65.1.11 PXEDebugEnabled (read/write)

boolean IFirmwareSettings::PXEDebugEnabled

PXE debug logging flag. If set, VirtualBox will write extensive PXE trace information to the
release log.

6.65.1.12 SMBIOSUuidLittleEndian (read/write)

boolean IFirmwareSettings::SMBIOSUuidLittleEndian

Flag to control whether the SMBIOS system UUID is presented in little endian form to the
guest as mandated by the SMBIOS spec chapter 7.2.1. Before VirtualBox version 6.1 it was
always presented in big endian form and to retain the old behavior this flag was introduced so it
can be changed. VMs created with VBox 6.1 will default to true for this flag.

6.65.1.13 AutoSerialNumGen (read/write)
boolean IFirmwareSettings::AutoSerialNumGen

Flag for enabling automatic VM serial number generation.

6.66 IForm

6.66.1 Attributes
6.66.1.1 values (read-only)

IFormValue IForm::values|]

6.66.2 apply

IProgress IForm::apply()

6.66.3 getFieldGroup

wstring[] IForm::getFieldGroup(
[in] wstring field)

field

118

6 Classes (interfaces)

6.67 IFormValue

6.67.1 Attributes
6.67.1.1 type (read-only)

FormValueType IFormValue::type

6.67.1.2 generation (read-only)

long IFormValue::generation

6.67.1.3 enabled (read-only)

boolean IFormValue::enabled

6.67.1.4 visible (read-only)

boolean IFormValue::visible

6.67.1.5 label (read-only)

wstring IFormValue::label

6.67.1.6 description (read-only)

wstring IFormValue::description

6.67.1.7 help (read-only)

wstring IFormValue: :help

6.68 IFramebuffer

6.68.1 Attributes
6.68.1.1 width (read-only)

unsigned long IFramebuffer::width

Frame buffer width, in pixels.

6.68.1.2 height (read-only)

unsigned long IFramebuffer::height

Frame buffer height, in pixels.

6.68.1.3 bitsPerPixel (read-only)

unsigned long IFramebuffer::bitsPerPixel

Color depth, in bits per pixel.

119

6 Classes (interfaces)

6.68.1.4 bytesPerLine (read-only)

unsigned long IFramebuffer::bytesPerLine
Scan line size, in bytes.

6.68.1.5 pixelFormat (read-only)

BitmapFormat IFramebuffer::pixelFormat

Frame buffer pixel format. It’s one of the values defined by BitmapFormat.

Note: This attribute must never (and will never) return Opaque - the format of the
frame buffer must be always known.

6.68.1.6 heightReduction (read-only)

unsigned long IFramebuffer::heightReduction

Hint from the frame buffer about how much of the standard screen height it wants to use for
itself. This information is exposed to the guest through the VESA BIOS and VMMDev interface
so that it can use it for determining its video mode table. It is not guaranteed that the guest
respects the value.

6.68.1.7 overlay (read-only)

IFramebufferOverlay IFramebuffer::overlay

An alpha-blended overlay which is superposed over the frame buffer. The initial purpose is to
allow the display of icons providing information about the VM state, including disk activity, in
front ends which do not have other means of doing that. The overlay is designed to controlled
exclusively by IDisplay. It has no locking of its own, and any changes made to it are not guar-
anteed to be visible until the affected portion of [Framebuffer is updated. The overlay can be
created lazily the first time it is requested. This attribute can also return null to signal that the
overlay is not implemented.

6.68.1.8 winld (read-only)

long long IFramebuffer::winId

Platform-dependent identifier of the window where context of this frame buffer is drawn, or
zero if there’s no such window.

6.68.1.9 capabilities (read-only)

FramebufferCapabilities IFramebuffer::capabilities|[]

Capabilities of the framebuffer instance.
For the meaning of individual capability flags see FramebufferCapabilities.

120

6 Classes (interfaces)

6.68.2 getVisibleRegion

’ Note: This method is not supported in the web service.

unsigned long IFramebuffer::getVisibleRegion(
[in] [ptr] octet rectangles,
[in] unsigned long count)

rectangles Pointer to the RTRECT array to receive region data.
count Number of RTRECT elements in the rectangles array.

Returns the visible region of this frame buffer.

If the rectangles parameter is null then the value of the count parameter is ignored and the
number of elements necessary to describe the current visible region is returned in countCopied.

If rectangles is not null but count is less than the required number of elements to store
region data, the method will report a failure. If count is equal or greater than the required
number of elements, then the actual number of elements copied to the provided array will be
returned in countCopied.

Note: The address of the provided array must be in the process space of this [Frame-
buffer object.

’ Note: Method not yet implemented.

6.68.3 notify3DEvent

void IFramebuffer::notify3DEvent(
[in] unsigned long type,
[in] octet data[])

type event type. VBOX3D _NOTIFY _TYPE_* in VBoxVideo3D.h
data event-specific data, depends on the supplied event type

Notifies framebuffer about 3D backend event.

6.68.4 notifyChange

void IFramebuffer::notifyChange(
[in] unsigned long screenId,
[in] unsigned long xOrigin,
[in] unsigned long yOrigin,
[in] unsigned long width,
[in] unsigned long height)

screenld Logical guest screen number.
xOrigin Location of the screen in the guest.
yOrigin Location of the screen in the guest.
width Width of the guest display, in pixels.
height Height of the guest display, in pixels.

Requests a size change.

121

6 Classes (interfaces)

6.68.5 notifyUpdate

void IFramebuffer::notifyUpdate(
[in] unsigned long x,
[in] unsigned long vy,
[in] unsigned long width,
[in] unsigned long height)

X X position of update.

y Y position of update.
width Width of update.
height Height of update.

Informs about an update. Gets called by the display object where this buffer is registered.

6.68.6 notifyUpdatelmage

void IFramebuffer::notifyUpdateImage (
[in] unsigned long x,
[in] unsigned long vy,
[in] unsigned long width,
[in] unsigned long height,
[in] octet image[])

X X position of update.

y Y position of update.

width Width of update.

height Height of update.

image Array with 32BPP image data.

Informs about an update and provides 32bpp bitmap.

6.68.7 processVHWACommand

’ Note: This method is not supported in the web service.

void IFramebuffer::processVHWACommand (
[in] [ptr] octet command,
[in] long enmCmd,
[in] boolean fromGuest)

command Pointer to VBOXVHWACMD containing the command to execute.
enmCmd The validated VBOXVHWACMD::enmCmd value from the command.
fromGuest Set when the command origins from the guest, clear if host.

Posts a Video HW Acceleration Command to the frame buffer for processing. The commands
used for 2D video acceleration (DDraw surface creation/destroying, blitting, scaling, color con-
version, overlaying, etc.) are posted from quest to the host to be processed by the host hardware.

Note: The address of the provided command must be in the process space of this
IFramebuffer object.

122

6 Classes (interfaces)

6.68.8 setVisibleRegion

Note: This method is not supported in the web service.

void IFramebuffer::setVisibleRegion(
[in] [ptr] octet rectangles,
[in] unsigned long count)

rectangles Pointer to the RTRECT array.

count Number of RTRECT elements in the rectangles array.

Suggests a new visible region to this frame buffer. This region represents the area of the VM
display which is a union of regions of all top-level windows of the guest operating system running
inside the VM (if the Guest Additions for this system support this functionality). This information
may be used by the frontends to implement the seamless desktop integration feature.

Note: The address of the provided array must be in the process space of this IFrame-
buffer object.

Note: The IFramebuffer implementation must make a copy of the provided array of
rectangles.

Note: Method not yet implemented.

6.68.9 videoModeSupported

boolean IFramebuffer::videoModeSupported(
[in] unsigned long width,
[in] unsigned long height,
[in] unsigned long bpp)

width
height
bpp

Returns whether the frame buffer implementation is willing to support a given video mode.
In case it is not able to render the video mode (or for some reason not willing), it should return
false. Usually this method is called when the guest asks the VMM device whether a given video
mode is supported so the information returned is directly exposed to the guest. It is important
that this method returns very quickly.

123

6 Classes (interfaces)

6.69 IFramebufferOverlay (IFramebuffer)

Note: This interface extends I[Framebuffer and therefore supports all its methods and
attributes as well.

The IFramebufferOverlay interface represents an alpha blended overlay for displaying status
icons above an IFramebuffer. It is always created not visible, so that it must be explicitly shown.
It only covers a portion of the IFramebuffer, determined by its width, height and co-ordinates. It
is always in packed pixel little-endian 32bit ARGB (in that order) format, and may be written to
directly. Do re-read the width though, after setting it, as it may be adjusted (increased) to make
it more suitable for the front end.

6.69.1 Attributes
6.69.1.1 x (read-only)

unsigned long IFramebufferOverlay::x

X position of the overlay, relative to the frame buffer.

6.69.1.2 y (read-only)

unsigned long IFramebufferOverlay::y
Y position of the overlay, relative to the frame buffer.
6.69.1.3 visible (read/write)
boolean IFramebufferOverlay::visible
Whether the overlay is currently visible.
6.69.1.4 alpha (read/write)
unsigned long IFramebufferOverlay::alpha

The global alpha value for the overlay. This may or may not be supported by a given front end.

6.69.2 move

void IFramebufferOverlay: :move(
[in] unsigned long x,
[in] unsigned long y)

Changes the overlay’s position relative to the I[Framebuffer.

6.70 IFsinfo

Abstract parent interface for VirtualBox file system information. This can be information about
a host or guest file system, for example.

124

6 Classes (interfaces)

6.70.1 Attributes
6.70.1.1 freeSize (read-only)

long long IFsInfo::freeSize

Remaining free space (in bytes) of the filesystem.

6.70.1.2 totalSize (read-only)

long long IFsInfo::totalSize

Total space (in bytes) of the filesystem.

6.70.1.3 blockSize (read-only)

unsigned long IFsInfo::blockSize

Block size (in bytes) of the filesystem.

6.70.1.4 sectorSize (read-only)

unsigned long IFsInfo::sectorSize

Sector size (in bytes) of the filesystem.

6.70.1.5 serialNumber (read-only)

unsigned long IFsInfo::serialNumber
Serial number of the filesystem.
6.70.1.6 isRemote (read-only)
boolean IFsInfo::isRemote
TRUE if the filesystem is remote, FALSE if the filesystem is local.
6.70.1.7 isCaseSensitive (read-only)
boolean IFsInfo::isCaseSensitive
TRUE if the filesystem is case sensitive, FALSE if the filesystem is case insensitive.
6.70.1.8 isReadOnly (read-only)
boolean IFsInfo::isReadOnly
TRUE if the filesystem is mounted read only, FALSE if the filesystem is mounted read write.
6.70.1.9 isCompressed (read-only)
boolean IFsInfo::isCompressed

TRUE if the filesystem is compressed, FALSE if it isn’t or we don’t know.

125

6 Classes (interfaces)

6.70.1.10 supportsFileCompression (read-only)

boolean IFsInfo::supportsFileCompression

TRUE if the filesystem compresses of individual files, FALSE if it doesn’t or we don’t know.

6.70.1.11 maxComponent (read-only)

unsigned long IFsInfo::maxComponent

The maximum size of a filesystem object name.

6.70.1.12 type (read-only)

wstring IFsInfo::type

Name of the filesystem.

6.70.1.13 label (read-only)

wstring IFsInfo::label

Label of the filesystem.
6.70.1.14 mountPoint (read-only)
wstring IFsInfo::mountPoint

Mount point of the filesystem.

6.71 IFsObjinfo

Abstract parent interface for VirtualBox file system object information. This can be information
about a file or a directory, for example.

6.71.1 Attributes
6.71.1.1 name (read-only)

wstring IFsObjInfo::name

The object’s name.
6.71.1.2 type (read-only)
FsObjType IFsObjInfo::type

The object type. See FsObjType for more.
6.71.1.3 fileAttributes (read-only)
wstring IFsObjInfo::fileAttributes

File attributes.

126

6 Classes (interfaces)

6.71.1.4 objectSize (read-only)

long long IFsObjInfo::objectSize

The logical size (st_size). For normal files this is the size of the file. For symbolic links, this is
the length of the path name contained in the symbolic link. For other objects this fields needs to
be specified.

6.71.1.5 allocatedSize (read-only)
long long IFsObjInfo::allocatedSize

Disk allocation size (st_blocks * DEV_BSIZE).

6.71.1.6 accessTime (read-only)

long long IFsObjInfo::accessTime

Time of last access (st_atime).

6.71.1.7 birthTime (read-only)

long long IFsObjInfo::birthTime
Time of file birth (st_birthtime).
6.71.1.8 changeTime (read-only)
long long IFsObjInfo::changeTime
Time of last status change (st_ctime).
6.71.1.9 modificationTime (read-only)
long long IFsObjInfo::modificationTime
Time of last data modification (st_mtime).
6.71.1.10 UID (read-only)
long IFsObjInfo::UID
The user owning the filesystem object (st_uid). This is -1 if not available.
6.71.1.11 userName (read-only)
wstring IFsObjInfo::userName
The user name.
6.71.1.12 GID (read-only)
long IFsObjInfo::GID

The group the filesystem object is assigned (st_gid). This is -1 if not available.

127

6 Classes (interfaces)

6.71.1.13 groupName (read-only)

wstring IFsObjInfo::groupName

The group name.

6.71.1.14 nodeld (read-only)

long long IFsObjInfo::nodeld

The unique identifier (within the filesystem) of this filesystem object (st_ino). This is zero if
not availalbe.

6.71.1.15 nodeldDevice (read-only)

unsigned long IFsObjInfo::nodeIdDevice

The device number of the device which this filesystem object resides on (st_dev).
6.71.1.16 hardLinks (read-only)
unsigned long IFsObjInfo::hardLinks

Number of hard links to this filesystem object (st_nlink).

6.71.1.17 deviceNumber (read-only)

unsigned long IFsObjInfo::deviceNumber
The device number of a character or block device type object (st_rdev).
6.71.1.18 generationld (read-only)
unsigned long IFsObjInfo::generationId
The current generation number (st_gen).
6.71.1.19 userFlags (read-only)
unsigned long IFsObjInfo::userFlags

User flags (st_flags).

6.72 IGraphicsAdapter
The IGraphicsAdapter interface represents the graphics adapter of the virtual machine.
6.72.1 Attributes

6.72.1.1 graphicsControllerType (read/write)

GraphicsControllerType IGraphicsAdapter::graphicsControllerType

Graphics controller type.

128

6 Classes (interfaces)

6.72.1.2 VRAMSize (read/write)

unsigned long IGraphicsAdapter::VRAMSize

Video memory size in megabytes.

6.72.1.3 accelerate3DEnabled (read/write)

boolean IGraphicsAdapter::accelerate3DEnabled

This setting determines whether VirtualBox allows this machine to make use of the 3D graphics
support available on the host.

6.72.1.4 accelerate2DVideoEnabled (read/write)

boolean IGraphicsAdapter::accelerate2DVideoEnabled

This setting determines whether VirtualBox allows this machine to make use of the 2D video
acceleration support available on the host.

6.72.1.5 monitorCount (read/write)

unsigned long IGraphicsAdapter: :monitorCount

Number of virtual monitors.

’ Note: Only effective on Windows XP and later guests with Guest Additions installed.

6.73 IGuest

The IGuest interface represents information about the operating system running inside the virtual
machine. Used in IConsole::guest.

IGuest provides information about the guest operating system, whether Guest Additions are
installed and other OS-specific virtual machine properties.

6.73.1 Attributes
6.73.1.1 OSTypeld (read-only)

wstring IGuest::0STypeld

Identifier of the Guest OS type as reported by the Guest Additions. You may use
IVirtualBox::getGuestOSType() to obtain an IGuestOSType object representing details about the
given Guest OS type.

Note: If Guest Additions are not installed, this value will be the same as
IMachine::OSTypeld.

6.73.1.2 additionsRunLevel (read-only)

AdditionsRunLevelType IGuest::additionsRunLevel

Current run level of the installed Guest Additions.

129

6 Classes (interfaces)

6.73.1.3 additionsVersion (read-only)

wstring IGuest::additionsVersion

Version of the installed Guest Additions in the same format as IVirtualBox::version.

6.73.1.4 additionsRevision (read-only)

unsigned long IGuest::additionsRevision

The internal build revision number of the installed Guest Additions.
See also IVirtualBox::revision.

6.73.1.5 dnDSource (read-only)

IGuestDnDSource IGuest::dnDSource

Retrieves the drag’n drop source implementation for the guest side, that is, handling and
retrieving drag’n drop data from the guest.

6.73.1.6 dnDTarget (read-only)
IGuestDnDTarget IGuest::dnDTarget

Retrieves the drag’n drop source implementation for the host side. This will allow the host to
handle and initiate a drag’'n drop operation to copy data from the host to the guest.

6.73.1.7 eventSource (read-only)

IEventSource IGuest::eventSource

Event source for guest events.

6.73.1.8 facilities (read-only)

TAdditionsFacility IGuest::facilities[]

Returns a collection of current known facilities. Only returns facilities where a status is known,
e.g. facilities with an unknown status will not be returned.

6.73.1.9 sessions (read-only)
IGuestSession IGuest::sessions[]
Returns a collection of all opened guest sessions.
6.73.1.10 memoryBalloonSize (read/write)
unsigned long IGuest::memoryBalloonSize
Guest system memory balloon size in megabytes (transient property).
6.73.1.11 statisticsUpdatelnterval (read/write)
unsigned long IGuest::statisticsUpdateInterval

Interval to update guest statistics in seconds.

130

6 Classes (interfaces)

6.73.2 createSession

IGuestSession IGuest::createSession(
[in] wstring user,
[in] wstring password,
[in] wstring domain,
[in] wstring sessionName)

user User name this session will be using to control the guest; has to exist and have the appro-
priate rights to execute programs in the VM. Must not be empty.

password Password of the user account to be used. Empty passwords are allowed.

domain Domain name of the user account to be used if the guest is part of a domain. Optional.
This feature is not implemented yet.

sessionName The session’s friendly name. Optional, can be empty.

Creates a new guest session for controlling the guest. The new session will be started asyn-
chronously, meaning on return of this function it is not guaranteed that the guest session is in a
started and/or usable state. To wait for successful startup, use the IGuestSession::waitFor() call.

A guest session represents one impersonated user account in the guest, so every operation
will use the same credentials specified when creating the session object via createSession().
Anonymous sessions, that is, sessions without specifying a valid user account in the guest are not
allowed reasons of security.

There can be a maximum of 32 sessions at once per VM. An error will be returned if this has
been reached.

For more information please consult IGuestSession

If this method fails, the following error codes may be reported:

e VBOX_E_IPRT_ERROR: Error creating guest session.

e VBOX_E_MAXIMUM_REACHED: The maximum of concurrent guest sessions has been
reached.

6.73.3 findSession

IGuestSession[] IGuest::findSession(
[in] wstring sessionName)

sessionName The session’s friendly name to find. Wildcards like ? and * are allowed.

Finds guest sessions by their friendly name and returns an interface array with all found guest
sessions.

6.73.4 getAdditionsStatus

boolean IGuest::getAdditionsStatus(
[in] AdditionsRunLevelType level)

level Status level to check

Retrieve the current status of a certain Guest Additions run level.
If this method fails, the following error codes may be reported:

e VBOX_E_NOT_SUPPORTED: Wrong status level specified.

131

6 Classes (interfaces)

6.73.5 getFacilityStatus

AdditionsFacilityStatus IGuest::getFacilityStatus(
[in] AdditionsFacilityType facility,
[out] long long timestamp)

facility Facility to check status for.

timestamp Timestamp (in ms) of last status update seen by the host.

Get the current status of a Guest Additions facility.

6.73.6 internalGetStatistics

void IGuest::internalGetStatistics(
[out] unsigned long cpuUser,
[out] unsigned long cpuKernel,
[out] unsigned long cpuldle,
[out] unsigned long memTotal,
[out] unsigned long memFree,
[out] unsigned long memBalloon,
[out] unsigned long memShared,
[out] unsigned long memCache,
[out] unsigned long pagedTotal,
[out] unsigned long memAllocTotal,
[out] unsigned long memFreeTotal,
[out] unsigned long memBalloonTotal,
[out] unsigned long memSharedTotal)

cpuUser Percentage of processor time spent in user mode as seen by the guest.
cpuKernel Percentage of processor time spent in kernel mode as seen by the guest.
cpuldle Percentage of processor time spent idling as seen by the guest.
memTotal Total amount of physical guest RAM.

memFree Free amount of physical guest RAM.

memBalloon Amount of ballooned physical guest RAM.

memShared Amount of shared physical guest RAM.

memCache Total amount of guest (disk) cache memory.

pagedTotal Total amount of space in the page file.

memAllocTotal Total amount of memory allocated by the hypervisor.
memFreeTotal Total amount of free memory available in the hypervisor.
memBalloonTotal Total amount of memory ballooned by the hypervisor.

memSharedTotal Total amount of shared memory in the hypervisor.

Internal method; do not use as it might change at any time.

132

6 Classes (interfaces)

6.73.7 setCredentials

void IGuest::setCredentials(
[in] wstring userName,
[in] wstring password,
[in] wstring domain,
[in] boolean allowInteractivelogon)

userName User name string, can be empty
password Password string, can be empty
domain Domain name (guest logon scheme specific), can be empty

allowinteractiveLogon Flag whether the guest should alternatively allow the user to interac-
tively specify different credentials. This flag might not be supported by all versions of the
Additions.

Store login credentials that can be queried by guest operating systems with Additions installed.
The credentials are transient to the session and the guest may also choose to erase them. Note
that the caller cannot determine whether the guest operating system has queried or made use of
the credentials.

If this method fails, the following error codes may be reported:

e VBOX_E_VM_ERROR: VMM device is not available.

6.73.8 shutdown

void IGuest::shutdown(
[in] GuestShutdownFlag flags[])

flags GuestShutdownFlag flags.

Shuts down (and optionally halts and/or reboots) the guest. Needs supported Guest Additions
installed.
If this method fails, the following error codes may be reported:

e VBOX_E_NOT_SUPPORTED: Guest OS is not supported for shutting down, or the already
installed Guest Additions are not supported.

e VBOX_E_IPRT_ERROR: Error while shutting down.

6.73.9 updateGuestAdditions

IProgress IGuest::updateGuestAdditions(
[in] wstring source,
[in] wstring arguments[],
[in] AdditionsUpdateFlag flags[])

source Path to the Guest Additions .ISO file to use for the update.

arguments Optional command line arguments to use for the Guest Additions installer. Useful
for retrofitting features which weren’t installed before in the guest.

flags AdditionsUpdateFlag flags.

133

6 Classes (interfaces)

Automatically updates already installed Guest Additions in a VM.

At the moment only Windows and Linux guests are supported.

Because the VirtualBox Guest Additions drivers are not WHQL-certified yet there might be
warning dialogs during the actual Guest Additions update. These need to be confirmed man-
ually in order to continue the installation process. This applies to Windows 2000 and Win-
dows XP guests and therefore these guests can’t be updated in a fully automated fashion with-
out user interaction. However, to start a Guest Additions update for the mentioned Windows
versions anyway, the flag AdditionsUpdateFlag WaitForUpdateStartOnly can be specified. See
AdditionsUpdateFlag for more information.

The guest needs to be restarted in order to make use of the updated Guest Additions.

If this method fails, the following error codes may be reported:

e VBOX_E_NOT_SUPPORTED: Guest OS is not supported for automated Guest Additions up-
dates or the already installed Guest Additions are not ready yet.

e VBOX_E_IPRT_ERROR: Error while updating.

6.74 IGuestAdditionsStatusChangedEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

The guest addition status changed.

6.74.1 Attributes
6.74.1.1 facility (read-only)

AdditionsFacilityType IGuestAdditionsStatusChangedEvent::facility
Facility this event relates to.

6.74.1.2 status (read-only)

AdditionsFacilityStatus IGuestAdditionsStatusChangedEvent::status
The new facility status.

6.74.1.3 runlLevel (read-only)

AdditionsRunLevelType IGuestAdditionsStatusChangedEvent::runLevel
The new run level.

6.74.1.4 timestamp (read-only)

long long IGuestAdditionsStatusChangedEvent::timestamp

The millisecond timestamp associated with the event.

6.75 IGuestDebugControl

Controls the guest debug settings of one virtual machine.

134

6 Classes (interfaces)

6.75.1 Attributes
6.75.1.1 debugProvider (read/write)

GuestDebugProvider IGuestDebugControl::debugProvider

The currently active debug provider.

6.75.1.2 debugloProvider (read/write)

GuestDebugIoProvider IGuestDebugControl::debugIoProvider

The I/0 backend for the selected debug provider.

6.75.1.3 debugAddress (read/write)

wstring IGuestDebugControl::debugAddress

The address to connect to or listen on, depending on the type.

6.75.1.4 debugPort (read/write)

unsigned long IGuestDebugControl::debugPort

The port to listen on or connect to, depending on the selected I/0 provider. Might be ignored
by some providers.

6.76 IGuestDebugControlChangedEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

Notification when a property of the guest debug settings changes. Interested callees should
use IGuestDebugControl methods and attributes to find out what has changed.

6.76.1 Attributes
6.76.1.1 guestDebugControl (read-only)
IGuestDebugControl IGuestDebugControlChangedEvent::guestDebugControl

Guest debug control object that is subject to change.

6.77 IGuestDirectory (IDirectory)

Note: This interface extends IDirectory and therefore supports all its methods and
attributes as well.

Implementation of the IDirectory object for directories in the guest.

6.77.1 Attributes
6.77.1.1 midlDoesNotLikeEmptyinterfaces (read-only)

boolean IGuestDirectory::midlDoesNotLikeEmptyInterfaces

135

6 Classes (interfaces)

6.78 IGuestDirectoryEvent (IGuestSessionEvent)

Note: This interface extends IGuestSessionEvent and therefore supports all its methods
and attributes as well.

Base abstract interface for all guest directory events.

6.78.1 Attributes
6.78.1.1 directory (read-only)
IGuestDirectory IGuestDirectoryEvent::directory

Guest directory object which is related to this event.

6.79 IGuestDirectoryReadEvent (IGuestDirectoryEvent)

Note: This interface extends IGuestDirectoryEvent and therefore supports all its meth-
ods and attributes as well.

Notification when a directory entry has been read.

6.79.1 Attributes
6.79.1.1 path (read-only)
wstring IGuestDirectoryReadEvent::path

Path of the directory entry.

6.79.1.2 objinfo (read-only)
IFsObjInfo IGuestDirectoryReadEvent::objInfo

Object information of the directory entry. Also see IFsObjInfo.

6.79.1.3 owner (read-only)
wstring IGuestDirectoryReadEvent::owner

Resolved owner name of the directory entry.

6.79.1.4 groups (read-only)
wstring IGuestDirectoryReadEvent::groups

Resolved user groups of the directory entry.

6.80 IGuestDirectoryRegisteredEvent (IGuestDirectoryEvent)

Note: This interface extends IGuestDirectoryEvent and therefore supports all its meth-
ods and attributes as well.

Notification when a guest directory was registered or unregistered.

136

6 Classes (interfaces)

6.80.1 Attributes
6.80.1.1 registered (read-only)

boolean IGuestDirectoryRegisteredEvent::registered

If true, the guest directory was registered, otherwise it was unregistered.

6.81 IGuestDirectoryStateChangedEvent
(IGuestDirectoryEvent)

Note: This interface extends IGuestDirectoryEvent and therefore supports all its meth-
ods and attributes as well.

Notification when a guest directory changed its state.

6.81.1 Attributes
6.81.1.1 status (read-only)

DirectoryStatus IGuestDirectoryStateChangedEvent::status

New guest directory status.

6.81.1.2 error (read-only)

IVirtualBoxErrorInfo IGuestDirectoryStateChangedEvent::error

Error information in case of new session status is indicating an error.
The attribute IVirtualBoxErrorInfo::resultDetail will contain the runtime (IPRT) error code
from the guest. See include/iprt/err.h and include/VBox/err.h for details.

6.82 IGuestDnDSource (IDnDSource)

Note: This interface extends IDnDSource and therefore supports all its methods and
attributes as well.

Implementation of the IDnDSource object for source drag'n drop operations on the guest.

6.82.1 Attributes
6.82.1.1 midIDoesNotLikeEmptyinterfaces (read-only)

boolean IGuestDnDSource::midlDoesNotLikeEmptyInterfaces

6.83 IGuestDnDTarget (IDnDTarget)

Note: This interface extends IDnDTarget and therefore supports all its methods and
attributes as well.

Implementation of the IDnDTarget object for target drag’n drop operations on the guest.

137

6 Classes (interfaces)

6.83.1 Attributes
6.83.1.1 midlDoesNotLikeEmptyinterfaces (read-only)

boolean IGuestDnDTarget::midlDoesNotLikeEmptyInterfaces

6.84 IGuestFile (IFile)

Note: This interface extends IFile and therefore supports all its methods and attributes
as well.

Implementation of the IFile object for files in the guest.

6.84.1 Attributes
6.84.1.1 midlDoesNotLikeEmptyinterfaces (read-only)

boolean IGuestFile::midlDoesNotLikeEmptyInterfaces

6.85 IGuestFileEvent (IGuestSessionEvent)

Note: This interface extends IGuestSessionEvent and therefore supports all its methods
and attributes as well.

Base abstract interface for all guest file events.

6.85.1 Attributes
6.85.1.1 file (read-only)

IGuestFile IGuestFileEvent::file

Guest file object which is related to this event.

6.86 IGuestFilelOEvent (IGuestFileEvent)

Note: This interface extends IGuestFileEvent and therefore supports all its methods
and attributes as well.

Base abstract interface for all guest file input/output (I0) events.

6.86.1 Attributes
6.86.1.1 offset (read-only)

long long IGuestFileIOEvent::offset

Current offset (in bytes).

138

6 Classes (interfaces)

6.86.1.2 processed (read-only)

unsigned long IGuestFileIOEvent::processed

Processed input or output (in bytes).

6.87 IGuestFileOffsetChangedEvent (IGuestFilelOEvent)

Note: This interface extends IGuestFileIOEvent and therefore supports all its methods
and attributes as well.

Notification when a guest file changed its current offset via IFile::seek().

6.87.1 Attributes
6.87.1.1 midIDoesNotLikeEmptyinterfaces (read-only)

boolean IGuestFileOffsetChangedEvent::midlDoesNotLikeEmptyInterfaces

6.88 IGuestFileReadEvent (IGuestFilelOEvent)

Note: This interface extends IGuestFileIOEvent and therefore supports all its methods
and attributes as well.

Notification when data has been read from a guest file.

6.88.1 Attributes
6.88.1.1 data (read-only)

octet IGuestFileReadEvent::datal[]

Actual data read.

6.89 IGuestFileRegisteredEvent (IGuestFileEvent)

Note: This interface extends IGuestFileEvent and therefore supports all its methods
and attributes as well.

Notification when a guest file was registered or unregistered.

6.89.1 Attributes
6.89.1.1 registered (read-only)

boolean IGuestFileRegisteredEvent::registered

If true, the guest file was registered, otherwise it was unregistered.

139

6 Classes (interfaces)

6.90 IGuestFileSizeChangedEvent (IGuestFileEvent)

Note: This interface extends IGuestFileEvent and therefore supports all its methods
and attributes as well.

Notification when a guest file changed its size via IFile::setSize().

6.90.1 Attributes
6.90.1.1 newSize (read-only)

long long IGuestFileSizeChangedEvent::newSize

6.91 IGuestFileStateChangedEvent (IGuestFileEvent)

Note: This interface extends IGuestFileEvent and therefore supports all its methods
and attributes as well.

Notification when a guest file changed its state.

6.91.1 Attributes
6.91.1.1 status (read-only)

FileStatus IGuestFileStateChangedEvent::status
New guest file status.
6.91.1.2 error (read-only)
IVirtualBoxErrorInfo IGuestFileStateChangedEvent::error

Error information in case of new session status is indicating an error.

The attribute IVirtualBoxErrorInfo::resultDetail will contain the runtime (IPRT) error code

from the guest. See include/iprt/err.h and include/VBox/err.h for details.

6.92 IGuestFileWriteEvent (IGuestFilelOEvent)

Note: This interface extends IGuestFileIOEvent and therefore supports all its methods
and attributes as well.

Notification when data has been written to a guest file.

6.92.1 Attributes
6.92.1.1 midlDoesNotLikeEmptyinterfaces (read-only)

boolean IGuestFileWriteEvent::midlDoesNotLikeEmptyInterfaces

140

6 Classes (interfaces)

6.93 IGuestFsinfo (IFsinfo)

Note: This interface extends IFsInfo and therefore supports all its methods and at-
tributes as well.

Represents the guest implementation of the IFsInfo object.

6.93.1 Attributes
6.93.1.1 midIDoesNotLikeEmptyinterfaces (read-only)

boolean IGuestFsInfo::midlDoesNotLikeEmptyInterfaces

6.94 IGuestFsObijlnfo (IFsObjlnfo)

Note: This interface extends IFsObjinfo and therefore supports all its methods and
attributes as well.

Represents the guest implementation of the IFsObjInfo object.

6.94.1 Attributes
6.94.1.1 midIDoesNotLikeEmptyinterfaces (read-only)

boolean IGuestFsObjInfo::midlDoesNotLikeEmptyInterfaces

6.95 IGuestKeyboardEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

Notification when guest keyboard event happens.

6.95.1 Attributes
6.95.1.1 scancodes (read-only)

long IGuestKeyboardEvent::scancodes][]

Array of scancodes.

6.96 IGuestMonitorChangedEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

Notification when the guest enables one of its monitors.

141

6 Classes (interfaces)

6.96.1 Attributes
6.96.1.1 changeType (read-only)

GuestMonitorChangedEventType IGuestMonitorChangedEvent::changeType

What was changed for this guest monitor.

6.96.1.2 screenld (read-only)

unsigned long IGuestMonitorChangedEvent::screenId

The monitor which was changed.

6.96.1.3 originX (read-only)

unsigned long IGuestMonitorChangedEvent::originX

Physical X origin relative to the primary screen. Valid for Enabled and NewOrigin.

6.96.1.4 originY (read-only)

unsigned long IGuestMonitorChangedEvent::originY

Physical Y origin relative to the primary screen. Valid for Enabled and NewOrigin.

6.96.1.5 width (read-only)

unsigned long IGuestMonitorChangedEvent::width

Width of the screen. Valid for Enabled.

6.96.1.6 height (read-only)

unsigned long IGuestMonitorChangedEvent::height

Height of the screen. Valid for Enabled.

6.97 IGuestMonitorinfoChangedEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

The guest reports cursor position data.

6.97.1 Attributes
6.97.1.1 output (read-only)

unsigned long IGuestMonitorInfoChangedEvent: :output

The virtual display output on which the monitor has changed.

142

6 Classes (interfaces)

6.98 IGuestMouseEvent (IReusableEvent)

Note: This interface extends IReusableEvent and therefore supports all its methods and
attributes as well.

Notification when guest mouse event happens.

6.98.1 Attributes
6.98.1.1 mode (read-only)

GuestMouseEventMode IGuestMouseEvent::mode

If this event is relative, absolute or multi-touch.

6.98.1.2 x (read-only)

long IGuestMouseEvent::x

New X position, or X delta.

6.98.1.3 y (read-only)

long IGuestMouseEvent::y

New Y position, or Y delta.

6.98.1.4 z (read-only)

long IGuestMouseEvent::z

Z delta.

6.98.1.5 w (read-only)

long IGuestMouseEvent::w

W delta.

6.98.1.6 buttons (read-only)

long IGuestMouseEvent::buttons

Button state bitmask.

6.99 IGuestMultiTouchEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

Notification when guest touch screen event happens.

143

6 Classes (interfaces)

6.99.1 Attributes
6.99.1.1 contactCount (read-only)

long IGuestMultiTouchEvent::contactCount

Number of contacts in the event.

6.99.1.2 xPositions (read-only)

short IGuestMultiTouchEvent::xPositions|[]
X positions.

6.99.1.3 yPositions (read-only)

short IGuestMultiTouchEvent::yPositions[]
Y positions.

6.99.1.4 contactlds (read-only)

unsigned short IGuestMultiTouchEvent::contactIds[]
Contact identifiers.

6.99.1.5 contactFlags (read-only)

unsigned short IGuestMultiTouchEvent::contactFlags|[]
Contact state. Bit O: in contact. Bit 1: in range.

6.99.1.6 isTouchScreen (read-only)

boolean IGuestMultiTouchEvent::isTouchScreen
Distinguishes between touchscreen and touchpad events.

6.99.1.7 scanTime (read-only)

unsigned long IGuestMultiTouchEvent::scanTime

Timestamp of the event in milliseconds. Only relative time between events is important.

6.100 IGuestOSType

Note: With the web service, this interface is mapped to a structure. Attributes that
return this interface will not return an object, but a complete structure containing the
attributes listed below as structure members.

Specifies a guest OS type and its recommendations.

144

6 Classes (interfaces)

6.100.1 Attributes
6.100.1.1 familyld (read-only)

wstring IGuestOSType::familyId

Guest OS family identifier string.

6.100.1.2 familyDescription (read-only)

wstring IGuestOSType::familyDescription

Human readable description of the guest OS family.

6.100.1.3 id (read-only)

wstring IGuestOSType::id

Guest OS identifier string.

6.100.1.4 subtype (read-only)

wstring IGuestOSType::subtype

Guest OS subtype string.

6.100.1.5 description (read-only)

wstring IGuestOSType::description

Human readable description of the guest OS.

6.100.1.6 is64Bit (read-only)

boolean IGuestOSType::is64Bit

Returns true if the given OS is 64-bit

6.100.1.7 platformArchitecture (read-only)

PlatformArchitecture IGuestOSType::platformArchitecture

Returns the guest OS platform architecture.

6.100.1.8 recommendedIOAPIC (read-only)

boolean IGuest0SType::recommendedIOAPIC

Returns true if I/O-APIC recommended for this OS type. Only applies to x86-based platforms.

6.100.1.9 recommendedVirtEx (read-only)

boolean IGuest0SType::recommendedVirtEx

Returns true if VI-x or AMD-V recommended for this OS type. Only applies to x86-based
platforms.

145

6 Classes (interfaces)

6.100.1.10 recommendedRAM (read-only)

unsigned long IGuestOSType: :recommendedRAM

Recommended RAM size in Megabytes.

6.100.1.11 recommendedGraphicsController (read-only)

GraphicsControllerType IGuestOSType::recommendedGraphicsController

Recommended graphics controller type.

6.100.1.12 recommendedVRAM (read-only)

unsigned long IGuestOSType::recommendedVRAM

Recommended video RAM size in Megabytes.

6.100.1.13 recommended2DVideoAcceleration (read-only)

boolean IGuest0SType::recommended2DVideoAcceleration

Returns true if 2D video acceleration is recommended for this OS type.

6.100.1.14 recommended3DAcceleration (read-only)

boolean IGuest0SType::recommended3DAcceleration

Returns true if 3D acceleration is recommended for this OS type.

6.100.1.15 recommendedHDD (read-only)

long long IGuestOSType::recommendedHDD

Recommended hard disk size in bytes.

6.100.1.16 adapterType (read-only)

NetworkAdapterType IGuestOSType::adapterType

Returns recommended network adapter for this OS type.

6.100.1.17 recommendedPAE (read-only)

boolean IGuest0SType::recommendedPAE

Returns true if using PAE is recommended for this OS type. Only applies to x86-based plat-
forms.

6.100.1.18 recommendedDVDStorageController (read-only)

StorageControllerType IGuestOSType::recommendedDVDStorageController

Recommended storage controller type for DVD/CD drives.

146

6 Classes (interfaces)

6.100.1.19 recommendedDVDStorageBus (read-only)

StorageBus IGuestO0SType::recommendedDVDStorageBus

Recommended storage bus type for DVD/CD drives.

6.100.1.20 recommendedHDStorageController (read-only)

StorageControllerType IGuest0SType::recommendedHDStorageController

Recommended storage controller type for HD drives.

6.100.1.21 recommendedHDStorageBus (read-only)

StorageBus IGuestOSType:: recommendedHDStorageBus

Recommended storage bus type for HD drives.

6.100.1.22 recommendedFirmware (read-only)

FirmwareType IGuestOSType::recommendedFirmware

Recommended firmware type.

6.100.1.23 recommendedUSBHID (read-only)

boolean IGuest0SType::recommendedUSBHID

Returns true if using USB Human Interface Devices, such as keyboard and mouse recom-
mended.

6.100.1.24 recommendedHPET (read-only)

boolean IGuest0SType::recommendedHPET

Returns true if using HPET is recommended for this OS type. Only applies to x86-based
platforms.

6.100.1.25 recommendedUSBTablet (read-only)

boolean IGuest0SType::recommendedUSBTablet

Returns true if using a USB Tablet is recommended.

6.100.1.26 recommendedRTCUseUTC (read-only)

boolean IGuest0SType::recommendedRTCUseUTC

Returns true if the RTC of this VM should be set to UTC.

6.100.1.27 recommendedChipset (read-only)

ChipsetType IGuestO0SType::recommendedChipset

Recommended chipset type.

147

6 Classes (interfaces)

6.100.1.28 recommendedlommuType (read-only)

IommuType IGuestOSType::recommendedIommuType

Recommended IOMMU type.

6.100.1.29 recommendedAudioController (read-only)

AudioControllerType IGuestOSType::recommendedAudioController

Recommended audio controller type.

6.100.1.30 recommendedAudioCodec (read-only)

AudioCodecType IGuestOSType::recommendedAudioCodec

Recommended audio codec type.

6.100.1.31 recommendedFloppy (read-only)

boolean IGuest0SType::recommendedFloppy

Returns true a floppy drive is recommended for this OS type.

6.100.1.32 recommendedUSB (read-only)

boolean IGuest0SType::recommendedUSB

Returns true a USB controller is recommended for this OS type.

6.100.1.33 recommendedUSB3 (read-only)

boolean IGuest0SType::recommendedUSB3

Returns true an xHCI (USB 3) controller is recommended for this OS type.

6.100.1.34 recommendedTFReset (read-only)

boolean IGuest0SType::recommendedTFReset

Returns true if using VCPU reset on triple fault is recommended for this OS type.

6.100.1.35 recommendedX2APIC (read-only)

boolean IGuest0SType::recommendedX2APIC

Returns true if X2APIC is recommended for this OS type. Only applies to x86-based platforms.

6.100.1.36 recommendedCPUCount (read-only)

unsigned long IGuestOSType::recommendedCPUCount

Number of vCPUs recommended for this OS type.

6.100.1.37 recommendedTpmType (read-only)

TpmType IGuestOSType::recommendedTpmType

Returns the recommended trusted platform module type for this OS type.

148

6 Classes (interfaces)

6.100.1.38 recommendedSecureBoot (read-only)

boolean IGuest0SType::recommendedSecureBoot

Returns true if EFI secure boot is recommended for this OS type.

6.100.1.39 recommendedWDDMGraphics (read-only)

boolean IGuest0SType::recommendedWDDMGraphics

Returns true if this OS usually has a WDDM graphics driver from guest additions.

6.100.1.40 guestAdditionsinstallPackageName (read-only)

wstring IGuestOSType::guestAdditionsInstallPackageName

The guest additions install package name as a string.

6.101 IGuestProcess (IProcess)

Note: This interface extends IProcess and therefore supports all its methods and at-
tributes as well.

Implementation of the IProcess object for processes the host has started in the guest.

6.101.1 Attributes
6.101.1.1 midlDoesNotLikeEmptylnterfaces (read-only)

boolean IGuestProcess::midlDoesNotLikeEmptyInterfaces

6.102 IGuestProcessEvent (IGuestSessionEvent)

Note: This interface extends IGuestSessionEvent and therefore supports all its methods
and attributes as well.

Base abstract interface for all guest process events.

6.102.1 Attributes
6.102.1.1 process (read-only)

IGuestProcess IGuestProcessEvent::process

Guest process object which is related to this event.

6.102.1.2 pid (read-only)

unsigned long IGuestProcessEvent::pid

Guest process ID (PID).

149

6 Classes (interfaces)

6.103 IGuestProcesslOEvent (IGuestProcessEvent)

Note: This interface extends IGuestProcessEvent and therefore supports all its methods
and attributes as well.

Base abstract interface for all guest process input/output (I0) events.

6.103.1 Attributes
6.103.1.1 handle (read-only)

unsigned long IGuestProcessIOEvent::handle

Input/output (I0) handle involved in this event. Usually 0 is stdin, 1 is stdout and 2 is stderr.

6.103.1.2 processed (read-only)

unsigned long IGuestProcessIOEvent::processed

Processed input or output (in bytes).

6.104 IGuestProcessinputNotifyEvent
(IGuestProcesslOEvent)

Note: This interface extends IGuestProcessIOEvent and therefore supports all its meth-
ods and attributes as well.

Notification when a guest process’ stdin became available.

’ Note: This event is right now not implemented!

6.104.1 Attributes
6.104.1.1 status (read-only)

ProcessInputStatus IGuestProcessInputNotifyEvent::status

Current process input status.

6.105 IGuestProcessOutputEvent (IGuestProcesslOEvent)

Note: This interface extends IGuestProcessIOEvent and therefore supports all its meth-
ods and attributes as well.

Notification when there is guest process output available for reading.

150

6 Classes (interfaces)

6.105.1 Attributes
6.105.1.1 data (read-only)
octet IGuestProcessOutputEvent::datal]

Actual output data.

6.106 IGuestProcessRegisteredEvent (IGuestProcessEvent)

Note: This interface extends IGuestProcessEvent and therefore supports all its methods
and attributes as well.

Notification when a guest process was registered or unregistered.

6.106.1 Attributes
6.106.1.1 registered (read-only)
boolean IGuestProcessRegisteredEvent::registered

If true, the guest process was registered, otherwise it was unregistered.

6.107 IGuestProcessStateChangedEvent
(IGuestProcessEvent)

Note: This interface extends IGuestProcessEvent and therefore supports all its methods
and attributes as well.

Notification when a guest process changed its state.

6.107.1 Attributes
6.107.1.1 status (read-only)
ProcessStatus IGuestProcessStateChangedEvent::status

New guest process status.

6.107.1.2 error (read-only)
IVirtualBoxErrorInfo IGuestProcessStateChangedEvent::error

Error information in case of new session status is indicating an error.
The attribute IVirtualBoxErrorInfo::resultDetail will contain the runtime (IPRT) error code
from the guest. See include/iprt/err.h and include/VBox/err.h for details.

6.108 IGuestPropertyChangedEvent (IMachineEvent)

Note: This interface extends IMachineEvent and therefore supports all its methods and
attributes as well.

Notification when a guest property has changed.

151

6 Classes (interfaces)

6.108.1 Attributes
6.108.1.1 name (read-only)

wstring IGuestPropertyChangedEvent: :name

The name of the property that has changed.

6.108.1.2 value (read-only)

wstring IGuestPropertyChangedEvent::value
The new property value.
6.108.1.3 flags (read-only)
wstring IGuestPropertyChangedEvent::flags
The new property flags.
6.108.1.4 fWasDeleted (read-only)
boolean IGuestPropertyChangedEvent::fWasDeleted

A flag which indicates that property was deleted.

6.109 IGuestScreeninfo

6.109.1 Attributes
6.109.1.1 screenld (read-only)

unsigned long IGuestScreenInfo::screenld

6.109.1.2 guestMonitorStatus (read-only)

GuestMonitorStatus IGuestScreenInfo::guestMonitorStatus

6.109.1.3 primary (read-only)

boolean IGuestScreenInfo::primary

6.109.1.4 origin (read-only)

boolean IGuestScreenInfo::origin

6.109.1.5 originX (read-only)

long IGuestScreenInfo::originX

6.109.1.6 originY (read-only)

long IGuestScreenInfo::originY

6.109.1.7 width (read-only)

unsigned long IGuestScreenInfo::width

152

6 Classes (interfaces)

6.109.1.8 height (read-only)

unsigned long IGuestScreenInfo::height

6.109.1.9 bitsPerPixel (read-only)

unsigned long IGuestScreenInfo::bitsPerPixel

6.109.1.10 extendedIinfo (read-only)

wstring IGuestScreenInfo::extendedInfo

6.110 IGuestSession

A guest session represents one impersonated user account in the guest, so every operation will
use the same credentials specified when creating the session object via IGuest::createSession().

There can be a maximum of 32 sessions at once per VM, whereas session 0 always is reserved
for the root session (the root session is part of that limit).

This root session is controlling all other guest sessions and also is responsible for actions which
require system level privileges.

Each guest session keeps track of the guest directories and files that it opened as well as guest
processes it has created. To work on guest files or directories a guest session offers methods to
open or create such objects (see fileOpen() or directoryOpen() for instance). Similarly, there a
methods for creating guest processes.

There can be up to 2048 objects (guest processes, files and directories) a time per guest session.
Exceeding the limit will result in an error (see the corresponding functions for more).

When done with either of these objects, including the guest session itself, use the appropriate
close() method to let the object do its cleanup work.

Closing a session via close() will try to close all the mentioned objects above unless these
objects are still used by a client.

A set of environment variables changes is associated with each session
(environmentChanges[]). These are applied to the base environment of the impersonated
guest user when creating a new guest process. For additional flexibility the processCreate()
and processCreateEx() methods allows you to specify individual environment changes for each
process you create. With newer guest addition versions, the base environment is also made
available via environmentBase[]. (One reason for why we record changes to a base environment
instead of working directly on an environment block is that we need to be compatible with older
Guest Additions. Another reason is that this way it is always possible to undo all the changes
you’ve scheduled.)

6.110.1 Attributes
6.110.1.1 user (read-only)

wstring IGuestSession::user

Returns the user name used by this session to impersonate users in the guest.

6.110.1.2 domain (read-only)

wstring IGuestSession::domain

Returns the domain name used by this session to impersonate users in the guest.

153

6 Classes (interfaces)

6.110.1.3 name (read-only)

wstring IGuestSession::name

Returns the session’s friendly name.

6.110.1.4 id (read-only)

unsigned long IGuestSession::id

Returns the internal session ID.

6.110.1.5 timeout (read/write)

unsigned long IGuestSession::timeout

Gets or sets the session timeout (in ms).

6.110.1.6 protocolVersion (read-only)

unsigned long IGuestSession::protocolVersion

Returns the protocol version which is used by this session to communicate with the guest.

6.110.1.7 status (read-only)

GuestSessionStatus IGuestSession::status

Returns the current session status.

6.110.1.8 environmentChanges (read/write)

wstring IGuestSession::environmentChanges|]

The set of scheduled environment changes to the base environment of the session. They are
in putenv format, i.e. “VAR=VALUE” for setting and “VAR” for unsetting. One entry per variable
(change). The changes are applied when creating new guest processes.

This is writable, so to undo all the scheduled changes, assign it an empty array.

6.110.1.9 environmentBase (read-only)

wstring IGuestSession::environmentBasel[]

The base environment of the session. They are on the “VAR=VALUE” form, one array entry
per variable.

Access fails with VBOX_E_NOT_SUPPORTED if the Guest Additions do not support the session
base environment feature. Support for this was introduced with protocol version XXXX.

Access fails with VBOX E INVALID OBJECT STATE if the Guest Additions has yet to report
the session base environment.

6.110.1.10 processes (read-only)

IGuestProcess IGuestSession::processes|]

Returns all current guest processes.

154

6 Classes (interfaces)

6.110.1.11 pathStyle (read-only)

PathStyle IGuestSession::pathStyle

The style of paths used by the guest. Handy for giving the right kind of path specifications to
fileOpen() and similar methods.

6.110.1.12 currentDirectory (read/write)

wstring IGuestSession::currentDirectory

Gets or sets the current directory of the session. Guest path style.

6.110.1.13 userHome (read-only)

wstring IGuestSession::userHome

Returns the user’s home / profile directory. Guest path style.

6.110.1.14 userDocuments (read-only)

wstring IGuestSession::userDocuments

Returns the user’s documents directory. Guest path style.

6.110.1.15 mountPoints (read-only)

wstring IGuestSession::mountPoints|[]

Returns all currently accessible (disk-based) mount points. On Windows guests, this returns
the currently mapped disk drives.
Access fails with VBOX_E_NOT_SUPPORTED if the Guest Additions do not support this feature.

6.110.1.16 directories (read-only)

IGuestDirectory IGuestSession::directories][]

Returns all currently opened guest directories.

6.110.1.17 files (read-only)

IGuestFile IGuestSession::files|[]

Returns all currently opened guest files.

6.110.1.18 eventSource (read-only)

IEventSource IGuestSession::eventSource

Event source for guest session events.

6.110.2 close

void IGuestSession::close()

Closes this session. All opened guest directories, files and processes which are not referenced
by clients anymore will be closed. Guest processes which fall into this category and still are
running in the guest will be terminated automatically.

155

6 Classes (interfaces)

6.110.3 copyFromGuest

IProgress IGuestSession::copyFromGuest(
[in] wstring sources|[],
[in] wstring filters[],
[in] wstring flags[],
[in] wstring destination)

sources Paths to directories and/or files on the guest side that should be copied to the host.
If the path ends with a path delimiter, only the directory’s content is being copied. Guest
path style.

filters Array of source filters. This uses the DOS/NT style wildcard characters *?’ and .

flags Array of comma-separated list of source flags.
The following flags are available:

CopyIntoExistingAllow copying into an existing destination directory.NoReplaceDo not
replace any existing destination files on the destination.FollowLinksFollows (and han-
dles) (symbolic) links.UpdateOnly copy when the source file is newer than the destination
file or when the destination file is missing.

destination Where to put the sources on the host. Host path style.

Copies directories and/or files from guest to the host.
This function requires several parallel arrays to be supplied, one set for each source.

6.110.4 copyToGuest

IProgress IGuestSession::copyToGuest(
[in] wstring sources[],
[in] wstring filters[],
[in] wstring flags[],
[in] wstring destination)

sources Paths to directories and/or files on the host side that should be copied to the guest. If
the path ends with a path delimiter, only the directory’s content is being copied. Host path

style.
filters Array of source filters. This uses the DOS/NT style wildcard characters *?’ and "*".

flags Array of comma-separated list of source flags.
The following flags are available:

CopyIntoExistingAllow copying into an existing destination directory.NoReplaceDo not
replace any existing destination files on the destination.FollowLinksFollows (and han-
dles) (symbolic) links.UpdateOnly copy when the source file is newer than the destination
file or when the destination file is missing.

destination Where to put the sources on the guest. Guest path style.

Copies directories and/or files from host to the guest.
This function requires several parallel arrays to be supplied, one set for each source.

156

6 Classes (interfaces)

6.110.5 directoryCopy

IProgress IGuestSession::directoryCopy(
[in] wstring source,
[in] wstring destination,
[in] DirectoryCopyFlag flags[])

source The path to the directory to copy (in the guest). Guest path style.

destination The path to the target directory (in the guest). Unless the CopylntoExisting flag is
given, the directory shall not already exist. Guest path style.

flags Zero or more DirectoryCopyFlag values.

Recursively copies a directory from one guest location to another.
If this method fails, the following error codes may be reported:

e E_NOTIMPL: Not yet implemented.

6.110.6 directoryCopyFromGuest

IProgress IGuestSession::directoryCopyFromGuest (
[in] wstring source,
[in] wstring destination,
[in] DirectoryCopyFlag flags[1])

source Path to the directory on the guest side that should be copied to the host. Guest path
style.

destination Where to put the directory on the host. Unless the CopylntoExisting flag is given,
the directory shall not already exist. Host path style.

flags Zero or more DirectoryCopyFlag values.

Recursively copies a directory from the guest to the host.

6.110.7 directoryCopyToGuest

IProgress IGuestSession::directoryCopyToGuest (
[in] wstring source,
[in] wstring destination,
[in] DirectoryCopyFlag flags[])
source Path to the directory on the host side that should be copied to the guest. Host path style.

destination Where to put the file in the guest. Unless the CopylntoExisting flag is given, the
directory shall not already exist. Guest style path.

flags Zero or more DirectoryCopyFlag values.

Recursively copies a directory from the host to the guest.

157

6 Classes (interfaces)

6.110.8 directoryCreate

void IGuestSession::directoryCreate(
[in] wstring path,
[in] unsigned long mode,
[in] DirectoryCreateFlag flags[])

path Path to the directory directory to be created. Guest path style.

mode The UNIX-style access mode mask to create the directory with. Whether/how all three
access groups and associated access rights are realized is guest OS dependent. The API
does the best it can on each OS.

flags Zero or more DirectoryCreateFlag flags.

Creates a directory in the guest.
If this method fails, the following error codes may be reported:

e VBOX_E_IPRT_ERROR: Error while creating the directory.

6.110.9 directoryCreateTemp

wstring IGuestSession::directoryCreateTemp (
[in] wstring templateName,
[in] unsigned long mode,
[in] wstring path,
[in] boolean secure)

templateName Template for the name of the directory to create. This must contain at least one
"X’ character. The first group of consecutive "X’ characters in the template will be replaced
by a random alphanumeric string to produce a unique name.

mode The UNIX-style access mode mask to create the directory with. Whether/how all three
access groups and associated access rights are realized is guest OS dependent. The API
does the best it can on each OS.

This parameter is ignored if the secure parameter is set to true.

Note: It is strongly recommended to use 0700.

path The path to the directory in which the temporary directory should be created. Guest path
style.

secure Whether to fail if the directory can not be securely created. Currently this means that
another unprivileged user cannot manipulate the path specified or remove the temporary
directory after it has been created. Also causes the mode specified to be ignored. May not
be supported on all guest types.

Creates a temporary directory in the guest.
If this method fails, the following error codes may be reported:

e VBOX_E_NOT_SUPPORTED: The operation is not possible as requested on this particular
guest type.

e E_INVALIDARG: Invalid argument. This includes an incorrectly formatted template, or a
non-absolute path.

e VBOX_E_IPRT_ERROR: The temporary directory could not be created. Possible reasons
include a non-existing path or an insecure path when the secure option was requested.

158

6 Classes (interfaces)

6.110.10 directoryExists

boolean IGuestSession::directoryExists(
[in] wstring path,
[in] boolean followSymlinks)

path Path to the directory to check if exists. Guest path style.

followSymlinks If true, symbolic links in the final component will be followed and the ex-
istance of the symlink target made the question for this method. If false, a symbolic
link in the final component will make the method return false (because a symlink isn’t a
directory).

Checks whether a directory exists in the guest or not.
If this method fails, the following error codes may be reported:

e VBOX_E_IPRT_ERROR: Error while checking existence of the directory specified.

6.110.11 directoryOpen

IGuestDirectory IGuestSession::directoryOpen(
[in] wstring path,
[in] wstring filter,
[in] DirectoryOpenFlag flags[1])

path Path to the directory to open. Guest path style.

filter Optional directory listing filter to apply. This uses the DOS/NT style wildcard characters
’?” and ¥

flags Zero or more DirectoryOpenFlag flags.

Opens a directory in the guest and creates a IGuestDirectory object that can be used for further
operations.

Note: This method follows symbolic links by default at the moment, this may change
in the future.

Note: One idiosyncrasy of the current implementation is that you will NOT get
VBOX E_OBJECT NOT FOUND returned here if the directory doesn’t exist. Instead
the read function will fail with VBOX E IPRT ERROR. This will be fixed soon.

If this method fails, the following error codes may be reported:
e VBOX_E_OBJECT_NOT_FOUND: Directory to open was not found.
e VBOX_E_IPRT_ERROR: Error while opening the directory.

e VBOX_E_MAXIMUM_REACHED: The maximum of concurrent guest directories has been
reached.

159

6 Classes (interfaces)

6.110.12 directoryRemove

void IGuestSession::directoryRemove(
[in] wstring path)

path Path to the directory that should be removed. Guest path style.

Removes a guest directory if empty.

Note: Symbolic links in the final component will not be followed, instead an not-a-
directory error is reported.

6.110.13 directoryRemoveRecursive

IProgress IGuestSession::directoryRemoveRecursive(
[in] wstring path,
[in] DirectoryRemoveRecFlag flags[])

path Path of the directory that is to be removed recursively. Guest path style.

flags Zero or more DirectoryRemoveRecFlag flags.

Note: WARNING! SPECIFYING ContentAndDir IS MANDATORY AT THE MOMENT!!

Removes a guest directory recursively.

Note: WARNING!! THE FLAGS ARE NOT CURRENTLY IMPLEMENTED. THE IMPLE-
MENTATION WORKS AS IF FLAGS WAS SET TO ContentAndDir.

Note: If the final path component is a symbolic link, this method will fail as it can only
be applied to directories.

6.110.14 environmentDoesBaseVariableExist

boolean IGuestSession::environmentDoesBaseVariableExist(
[in] wstring name)

name Name of the environment variable to look for. This cannot be empty nor can it contain
any equal signs.

Checks if the given environment variable exists in the session’s base environment
(environmentBase[]).
If this method fails, the following error codes may be reported:

e VBOX_E_NOT_SUPPORTED: If the Guest Additions do not support the session base environ-
ment feature. Support for this was introduced with protocol version XXXX.

e VBOX_E_INVALID_OBJECT_STATE: If the Guest Additions has yet to report the session base
environment.

160

6 Classes (interfaces)

6.110.15 environmentGetBaseVariable

wstring IGuestSession::environmentGetBaseVariable(
[in] wstring name)

name Name of the environment variable to get.This cannot be empty nor can it contain any
equal signs.

Gets an environment variable from the session’s base environment (environmentBase[]).
If this method fails, the following error codes may be reported:

e VBOX_E_NOT_SUPPORTED: If the Guest Additions do not support the session base environ-
ment feature. Support for this was introduced with protocol version XXXX.

e VBOX_E_INVALID OBJECT_STATE: Ifthe Guest Additions has yet to report the session base
environment.

6.110.16 environmentScheduleSet

void IGuestSession::environmentScheduleSet (
[in] wstring name,
[in] wstring value)

name Name of the environment variable to set. This cannot be empty nor can it contain any
equal signs.

value Value to set the session environment variable to.

Schedules setting an environment variable when creating the next guest process. This affects
the environmentChanges|[] attribute.

6.110.17 environmentScheduleUnset

void IGuestSession::environmentScheduleUnset(
[in] wstring name)

name Name of the environment variable to unset. This cannot be empty nor can it contain any
equal signs.

Schedules unsetting (removing) an environment variable when creating the next guest pro-
cess. This affects the environmentChanges[] attribute.

6.110.18 fileCopy

IProgress IGuestSession::fileCopy(
[in] wstring source,
[in] wstring destination,
[in] FileCopyFlag flags[])
source The path to the file to copy (in the guest). Guest path style.

destination The path to the target file (in the guest). This cannot be a directory. Guest path
style.

flags Zero or more FileCopyFlag values.

Copies a file from one guest location to another.

161

6 Classes (interfaces)

Note: Will overwrite the destination file unless NoReplace is specified.

If this method fails, the following error codes may be reported:

e E_NOTIMPL: Not yet implemented.

6.110.19 fileCopyFromGuest

IProgress IGuestSession::fileCopyFromGuest (

[in] wstring source,

[in] wstring destination,

[in] FileCopyFlag flags[])
source Path to the file on the guest side that should be copied to the host. Guest path style.
destination Where to put the file on the host (file, not directory). Host path style.

flags Zero or more FileCopyFlag values.

Copies a file from the guest to the host.

Note: Will overwrite the destination file unless NoReplace is specified.

If this method fails, the following error codes may be reported:

e VBOX_E_IPRT_ERROR: Error starting the copy operation.

6.110.20 fileCopyToGuest

IProgress IGuestSession::fileCopyToGuest (

[in] wstring source,

[in] wstring destination,

[in] FileCopyFlag flagsl[])
source Path to the file on the host side that should be copied to the guest. Host path style.
destination Where to put the file in the guest (file, not directory). Guest style path.

flags Zero or more FileCopyFlag values.

Copies a file from the host to the guest.

Note: Will overwrite the destination file unless NoReplace is specified.

If this method fails, the following error codes may be reported:

e VBOX_E_IPRT_ERROR: Error starting the copy operation.

162

6 Classes (interfaces)

6.110.21 fileCreateTemp

IGuestFile IGuestSession::fileCreateTemp(
[in] wstring templateName,
[in] unsigned long mode,
[in] wstring path,
[in] boolean secure)

templateName Template for the name of the file to create. This must contain at least one X’
character. The first group of consecutive X’ characters in the template will be replaced by
a random alphanumeric string to produce a unique name.

mode The UNIX-style access mode mask to create the file with. Whether/how all three access
groups and associated access rights are realized is guest OS dependent. The API does the
best it can on each OS.

This parameter is ignore if the secure parameter is set to true.

Note: It is strongly recommended to use 0600.

path The path to the directory in which the temporary file should be created.

secure Whether to fail if the file can not be securely created. Currently this means that another
unprivileged user cannot manipulate the path specified or remove the temporary file after
it has been created. Also causes the mode specified to be ignored. May not be supported
on all guest types.

Creates a temporary file in the guest.
If this method fails, the following error codes may be reported:

e VBOX_E_NOT_SUPPORTED: The operation is not possible as requested on this particular
guest OS.

e E_INVALIDARG: Invalid argument. This includes an incorrectly formatted template, or a
non-absolute path.

e VBOX_E_IPRT_ERROR: The temporary file could not be created. Possible reasons include
a non-existing path or an insecure path when the secure option was requested.

6.110.22 fileExists

boolean IGuestSession::fileExists(
[in] wstring path,
[in] boolean followSymlinks)

path Path to the alleged regular file. Guest path style.

followSymlinks If true, symbolic links in the final component will be followed and the exis-
tance of the symlink target made the question for this method. If false, a symbolic link in

the final component will make the method return false (because a symlink isn’t a regular
file).

Checks whether a regular file exists in the guest or not.
If this method fails, the following error codes may be reported:

e VBOX_E_IPRT_ERROR: Error while checking existence of the file specified.

163

6 Classes (interfaces)

6.110.23 fileOpen

IGuestFile IGuestSession::fileOpen(
[in] wstring path,
[in] FileAccessMode accessMode,
[in] FileOpenAction openAction,
[in] unsigned long creationMode)

path Path to file to open. Guest path style.
accessMode The file access mode (read, write and/or append). See FileAccessMode for details.

openAction What action to take depending on whether the file exists or not. See
FileOpenAction for details.

creationMode The UNIX-style access mode mask to create the file with if openAction requested
the file to be created (otherwise ignored). Whether/how all three access groups and as-

sociated access rights are realized is guest OS dependent. The API does the best it can on
each OS.

Opens a file and creates a IGuestFile object that can be used for further operations.
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: File to open was not found.
e VBOX_E_IPRT_ERROR: Error while opening the file.
e VBOX_E_MAXIMUM_REACHED: The maximum of concurrent guest files has been reached.

6.110.24 fileOpenEx

IGuestFile IGuestSession::fileOpenEx(
[in] wstring path,
[in] FileAccessMode accessMode,
[in] FileOpenAction openAction,
[in] FileSharingMode sharingMode,
[in] unsigned long creationMode,
[in] FileOpenExFlag flagsl[])

path Path to file to open. Guest path style.
accessMode The file access mode (read, write and/or append). See FileAccessMode for details.

openAction What action to take depending on whether the file exists or not. See
FileOpenAction for details.

sharingMode The file sharing mode in the guest. This parameter is currently ignore for all
guest OSes. It will in the future be implemented for Windows, OS/2 and maybe Solaris
guests only, the others will ignore it. Use All.

creationMode The UNIX-style access mode mask to create the file with if openAction requested
the file to be created (otherwise ignored). Whether/how all three access groups and as-
sociated access rights are realized is guest OS dependent. The API does the best it can on
each OS.

flags Zero or more FileOpenExFlag values.

Opens a file and creates a IGuestFile object that can be used for further operations, extended
version.

If this method fails, the following error codes may be reported:
e VBOX_E_OBJECT_NOT_FOUND: File to open was not found.
e VBOX_E_IPRT_ERROR: Error while opening the file.

164

6 Classes (interfaces)

6.110.25 fileQuerySize

long long IGuestSession::fileQuerySize(
[in] wstring path,
[in] boolean followSymlinks)

path Path to the file which size is requested. Guest path style.

followSymlinks It true, symbolic links in the final path component will be followed to their
target, and the size of the target is returned. If false, symbolic links in the final path
component will make the method call fail (symblink is not a regular file).

Queries the size of a regular file in the guest.
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: File to was not found.

e VBOX_E_IPRT_ERROR: Error querying file size.

6.110.26 fsObjCopyArray

IProgress IGuestSession::fsObjCopyArray(

[in] wstring source[],

[in] wstring destination,

[in] FileCopyFlag flags[])
source Array of paths to the file system objects to copy. Guest style path.
destination Where to copy the file system objects to (directory). Guest path style.
flags Zero or more FileCopyFlag values.

Copies file system objects (files, directories, symlinks, etc) from one guest location to another.
If this method fails, the following error codes may be reported:

e E_NOTIMPL: Not yet implemented.

6.110.27 fsObjExists

boolean IGuestSession::fsObjExists(
[in] wstring path,
[in] boolean followSymlinks)

path Path to the file system object to check the existance of. Guest path style.

followSymlinks If true, symbolic links in the final component will be followed and the method
will instead check if the target exists. If false, symbolic links in the final component will
satisfy the method and it will return true in exists.

Checks whether a file system object (file, directory, etc) exists in the guest or not.
If this method fails, the following error codes may be reported:

e VBOX_E_IPRT_ERROR: Error while checking existence of the file specified.

165

6 Classes (interfaces)

6.110.28 fsObjMove

IProgress IGuestSession::fsObjMove(
[in] wstring source,
[in] wstring destination,
[in] FsObjMoveFlag flags[])

source Path to the file to move. Guest path style.
destination Where to move the file to (file, not directory). Guest path style.

flags Zero or more FsObjMoveFlag values.

Moves a file system object (file, directory, symlink, etc) from one guest location to another.

This differs from fsObjRename() in that it can move accross file system boundraries. In that
case it will perform a copy and then delete the original. For directories, this can take a while and
is subject to races.

If this method fails, the following error codes may be reported:

e E_NOTIMPL: Not yet implemented.

6.110.29 fsObjMoveArray

IProgress IGuestSession::fsObjMoveArray(
[in] wstring source[],
[in] wstring destination,
[in] FsObjMoveFlag flagsl[])

source Array of paths to the file system objects to move. Guest style path.
destination Where to move the file system objects to (directory). Guest path style.
flags Zero or more FsObjMoveFlag values.

Moves file system objects (files, directories, symlinks, etc) from one guest location to another.
If this method fails, the following error codes may be reported:

e E_NOTIMPL: Not yet implemented.

6.110.30 fsObjQueryinfo

IGuestFsObjInfo IGuestSession::fsObjQueryInfo(
[in] wstring path,
[in] boolean followSymlinks)

path Path to the file system object to gather information about. Guest path style.

followSymlinks Information about symbolic links is returned if false. Otherwise, symbolic
links are followed and the returned information concerns itself with the symlink target if
true.

Queries information about a file system object (file, directory, etc) in the guest.
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: The file system object was not found.

e VBOX_E_IPRT_ERROR: Error while querying information.

166

6 Classes (interfaces)

6.110.31 fsObjRemove

void IGuestSession::fsObjRemove (
[in] wstring path)

path Path to the file system object to remove. Guest style path.

Removes a file system object (file, symlink, etc) in the guest. Will not work on directories, use
directoryRemove() to remove directories.

Note: This method will remove symbolic links in the final path component, not follow
them.

If this method fails, the following error codes may be reported:
e E_NOTIMPL: The method has not been implemented yet.
e VBOX_E_OBJECT_NOT_FOUND: The file system object was not found.
e VBOX_E_IPRT_ERROR: For most other errors. We know this is unhelpful, will fix shortly...

6.110.32 fsObjRemoveArray

IProgress IGuestSession::fsObjRemoveArray(
[in] wstring path[])

path Array of paths to the file system objects to remove. Guest style path.

Removes multiple file system objects (files, directories, symlinks, etc) in the guest. Use with
caution.

Note: This method is not implemented yet and will return E NOTIMPL.

Note: This method will remove symbolic links in the final path component, not follow
them.

If this method fails, the following error codes may be reported:

e E_NOTIMPL: The method has not been implemented yet.

6.110.33 fsObjRename

void IGuestSession::fsObjRename(
[in] wstring oldPath,
[in] wstring newPath,
[in] FsObjRenameFlag flags[])

oldPath The current path to the object. Guest path style.
newPath The new path to the object. Guest path style.
flags Zero or more FsObjRenameFlag values.

Renames a file system object (file, directory, symlink, etc) in the guest.
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: The file system object was not found.
e VBOX_E_IPRT_ERROR: For most other errors. We know this is unhelpful, will fix shortly...

167

6 Classes (interfaces)

6.110.34 fsObjSetACL

void IGuestSession::fsObjSetACL(
[in] wstring path,
[in] boolean followSymlinks,
[in] wstring acl,
[in] unsigned long mode)

path Full path of the file system object which ACL to set.

followSymlinks If true symbolic links in the final component will be followed, otherwise, if
false, the method will work directly on a symbolic link in the final component.

acl The ACL specification string. To-be-defined.

mode UNIX-style mode mask to use if acl is empty. As mention in directoryCreate() this is
realized on a best effort basis and the exact behavior depends on the Guest OS.

Sets the access control list (ACL) of a file system object (file, directory, etc) in the guest.
If this method fails, the following error codes may be reported:

e E_NOTIMPL: The method is not implemented yet.

6.110.35 fsQueryFreeSpace

long long IGuestSession::fsQueryFreeSpace(
[in] wstring path)

path Full path to return the free space for.

Returns the free space (in bytes) of a given path.

6.110.36 fsQueryinfo

IGuestFsInfo IGuestSession::fsQueryInfo(
[in] wstring path)

path Full path to return file system information for.

Returns file system information for a given path.

6.110.37 processCreate

IGuestProcess IGuestSession::processCreate(
[in] wstring executable,
[in] wstring arguments[],
[in] wstring cwd,
[in] wstring environmentChanges|[],
[in] ProcessCreateFlag flags[],
[in] unsigned long timeoutMS)

executable Full path to the file to execute in the guest. The file has to exist in the guest VM
with executable right to the session user in order to succeed. If empty/null, the first entry
in the arguments array will be used instead (i.e. argv[O]).

arguments Array of arguments passed to the new process.

168

6 Classes (interfaces)

Note: Starting with VirtualBox 5.0 this array starts with argument O instead of argu-
ment 1 as in previous versions. Whether the zeroth argument can be passed to the
guest depends on the VBoxService version running there. If you depend on this, check
that the protocolVersion is 3 or higher.

cwd Path to the directory in which to execute in the guest. The directory has to exist in the

guest VM with search rights to the session user in order to succeed. If empty/null, the
session user’s default (typically Thome’) directory is used. If not a full path, it is interpreted
relative to the default directory; e.g. 'work’ means '$HOME/work’ (according to the guest’s
"$HOME'- like concept).

environmentChanges Set of environment changes to complement environmentChanges[].

Takes precedence over the session ones. The changes are in putenv format, i.e.
“VAR=VALUE” for setting and “VAR” for unsetting.

The changes are applied to the base environment of the impersonated guest user
(environmentBase[]) when creating the process. (This is done on the guest side of things
in order to be compatible with older Guest Additions. That is one of the motivations for
not passing in the whole environment here.)

flags Process creation flags; see ProcessCreateFlag for more information.

timeoutMS Timeout (in ms) for limiting the guest process’ running time. Pass 0 for an infi-

nite timeout. On timeout the guest process will be killed and its status will be put to an
appropriate value. See ProcessStatus for more information.

Creates a new process running in the guest. The new process will be started asynchronously,
meaning on return of this function it is not be guaranteed that the guest process is in a started
state. To wait for successful startup, use the IProcess::waitFor() call.

Note: Starting at VirtualBox 4.2 guest process execution by is default limited to serve
up to 255 guest processes at a time. If all 255 guest processes are active and running,
creating a new guest process will result in an error.

If ProcessCreateFlag WaitForStdOut and/or ProcessCreateFlag WaitForStdErr are set,
the guest process will not enter the terminated state until all data from the specified
streams have been read.

If this method fails, the following error codes may be reported:

e VBOX_E_IPRT_ERROR: Error creating guest process.

e VBOX_E_MAXIMUM_REACHED: The maximum of concurrent guest processes has been

reached.

6.110.38 processCreateEx

IGuestProcess IGuestSession::processCreateEx(
[in] wstring executable,
[in] wstring arguments[],
[in] wstring cwd,
[in] wstring environmentChanges|[],
[in] ProcessCreateFlag flags[],
[in] unsigned long timeoutMS,
[in] ProcessPriority priority,
[in] long affinity[])

169

6 Classes (interfaces)

executable Full path to the file to execute in the guest. The file has to exist in the guest VM
with executable right to the session user in order to succeed. If empty/null, the first entry
in the arguments array will be used instead (i.e. argv[O]).

arguments Array of arguments passed to the new process.

Note: Starting with VirtualBox 5.0 this array starts with argument 0 instead of argu-
ment 1 as in previous versions. Whether the zeroth argument can be passed to the
guest depends on the VBoxService version running there. If you depend on this, check
that the protocolVersion is 3 or higher.

cwd Path to the directory in which to execute in the guest. The directory has to exist in the
guest VM with search rights to the session user in order to succeed. If empty/null, the
session user’s default (typically 'home’) directory is used. If not a full path, it is interpreted
relative to the default directory; e.g. 'work’ means '$HOME/work’ (according to the guest’s
"$HOME'- like concept).

environmentChanges Set of environment changes to complement environmentChanges[].
Takes precedence over the session ones. The changes are in putenv format, i.e.
“VAR=VALUE” for setting and “VAR” for unsetting.

The changes are applied to the base environment of the impersonated guest user
(environmentBase[]) when creating the process. (This is done on the guest side of things
in order to be compatible with older Guest Additions. That is one of the motivations for
not passing in the whole environment here.)

flags Process creation flags, see ProcessCreateFlag for detailed description of available flags.

timeoutMS Timeout (in ms) for limiting the guest process’ running time. Pass O for an infi-
nite timeout. On timeout the guest process will be killed and its status will be put to an
appropriate value. See ProcessStatus for more information.

priority Process priority to use for execution, see ProcessPriority for available priority levels.

Note: This is silently ignored if not supported by Guest Additions.

affinity Processor affinity to set for the new process. This is a list of guest CPU numbers the
process is allowed to run on.

Note: This is silently ignored if the guest does not support setting the affinity of pro-
cesses, or if the Guest Additions do not implemet this feature.

Creates a new process running in the guest with the extended options for setting the process
priority and affinity.
See processCreate() for more information.

6.110.39 processGet

IGuestProcess IGuestSession::processGet (
[in] unsigned long pid)

pid Process ID (PID) to get guest process for.

Gets a certain guest process by its process ID (PID).

170

6 Classes (interfaces)

6.110.40 symlinkCreate

void IGuestSession::symlinkCreate(
[in] wstring symlink,
[in] wstring target,
[in] SymlinkType type)

symlink Path to the symbolic link that should be created. Guest path style.

target The path to the symbolic link target. If not an absolute, this will be relative to the
symlink location at access time. Guest path style.

type The symbolic link type (mainly for Windows). See SymlinkType for more information.

Creates a symbolic link in the guest.
If this method fails, the following error codes may be reported:

e E_NOTIMPL: The method is not implemented yet.

6.110.41 symlinkExists

boolean IGuestSession::symlinkExists(
[in] wstring symlink)

symlink Path to the alleged symbolic link. Guest path style.

Checks whether a symbolic link exists in the guest.
If this method fails, the following error codes may be reported:

e E_NOTIMPL: The method is not implemented yet.

6.110.42 symlinkRead

wstring IGuestSession::symlinkRead (
[in] wstring symlink,
[in] SymlinkReadFlag flags[])

symlink Path to the symbolic link to read.
flags Zero or more SymlinkReadFlag values.

Reads the target value of a symbolic link in the guest.
If this method fails, the following error codes may be reported:

e E_NOTIMPL: The method is not implemented yet.

6.110.43 waitFor

GuestSessionWaitResult IGuestSession::waitFor(
[in] unsigned long waitFor,
[in] unsigned long timeoutMS)

waitFor Specifies what to wait for; see GuestSessionWaitForFlag for more information.
timeoutMS Timeout (in ms) to wait for the operation to complete. Pass O for an infinite timeout.

Waits for one or more events to happen.

Note: Deprecated and will be removed. Use waitForArray() instead.

171

6 Classes (interfaces)

6.110.44 waitForArray

GuestSessionWaitResult IGuestSession::waitForArray(
[in] GuestSessionWaitForFlag waitFor[],
[in] unsigned long timeoutMS)

waitFor Specifies what to wait for; see GuestSessionWaitForFlag for more information.

timeoutMS Timeout (in ms) to wait for the operation to complete. Pass O for an infinite timeout.

Waits for one or more events to happen. Scriptable version of waitFor().

6.111 IGuestSessionEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

Base abstract interface for all guest session events.

6.111.1 Attributes
6.111.1.1 session (read-only)

IGuestSession IGuestSessionEvent::session

Guest session that is subject to change.

6.112 IGuestSessionRegisteredEvent (IGuestSessionEvent)

Note: This interface extends IGuestSessionEvent and therefore supports all its methods
and attributes as well.

Notification when a guest session was registered or unregistered.

6.112.1 Attributes
6.112.1.1 registered (read-only)

boolean IGuestSessionRegisteredEvent::registered

If true, the guest session was registered, otherwise it was unregistered.

6.113 IGuestSessionStateChangedEvent
(IGuestSessionEvent)

Note: This interface extends IGuestSessionEvent and therefore supports all its methods
and attributes as well.

Notification when a guest session changed its state.

172

6 Classes (interfaces)

6.113.1 Attributes
6.113.1.1 id (read-only)

unsigned long IGuestSessionStateChangedEvent::id

Session ID of guest session which was changed.

6.113.1.2 status (read-only)

GuestSessionStatus IGuestSessionStateChangedEvent::status

New session status.

6.113.1.3 error (read-only)

IVirtualBoxErrorInfo IGuestSessionStateChangedEvent::error

Error information in case of new session status is indicating an error.
The attribute IVirtualBoxErrorInfo::resultDetail will contain the runtime (IPRT) error code
from the guest. See include/iprt/errh and include/VBox/err.h for details.

6.114 IGuestUserStateChangedEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

Notification when a guest user changed its state.

6.114.1 Attributes
6.114.1.1 name (read-only)

wstring IGuestUserStateChangedEvent: :name

Name of the guest user whose state changed.

6.114.1.2 domain (read-only)

wstring IGuestUserStateChangedEvent::domain

Name of the FQDN (fully qualified domain name) this user is bound to. Optional.

6.114.1.3 state (read-only)

GuestUserState IGuestUserStateChangedEvent::state

What was changed for this guest user. See GuestUserState for more information.

6.114.1.4 stateDetails (read-only)

wstring IGuestUserStateChangedEvent::stateDetails

Optional state details, depending on the state attribute.

173

6 Classes (interfaces)

6.115 IHost

The [Host interface represents the physical machine that this VirtualBox installation runs on.

An object implementing this interface is returned by the IVirtualBox::host attribute. This inter-
face contains read-only information about the host’s physical hardware (such as what processors
and disks are available, what the host operating system is, and so on) and also allows for ma-
nipulating some of the host’s hardware, such as global USB device filters and host interface
networking.

6.115.1 Attributes
6.115.1.1 architecture (read-only)

PlatformArchitecture IHost::architecture

Platform architecture type.

6.115.1.2 x86 (read-only)

IHostX86 IHost::x86

Associated object for x86 host specifics.

6.115.1.3 DVDDrives (read-only)

IMedium IHost::DVDDrives|]

List of DVD drives available on the host.

6.115.1.4 floppyDrives (read-only)

IMedium IHost::floppyDrives|[]

List of floppy drives available on the host.

6.115.1.5 audioDevices (read-only)

IHostAudioDevice IHost::audioDevices|[]

List of audio devices currently available on the host.
6.115.1.6 USBDevices (read-only)
IHostUSBDevice IHost::USBDevices[]

List of USB devices currently attached to the host. Once a new device is physically attached to
the host computer, it appears in this list and remains there until detached.

Note: If USB functionality is not available in the given edition of VirtualBox, this
method will set the result code to E_NOTIMPL.

174

6 Classes (interfaces)

6.115.1.7 USBDeviceFilters (read-only)

IHostUSBDeviceFilter IHost::USBDeviceFilters|[]

List of USB device filters in action. When a new device is physically attached to the host
computer, filters from this list are applied to it (in order they are stored in the list). The first
matched filter will determine the action performed on the device.

Unless the device is ignored by these filters, filters of all currently running virtual machines
(IUSBDeviceFilters::deviceFilters[]) are applied to it.

Note: If USB functionality is not available in the given edition of VirtualBox, this
method will set the result code to E_NOTIMPL.

See also: IHostUSBDeviceFilter, USBDeviceState

6.115.1.8 networkinterfaces (read-only)

IHostNetworkInterface IHost::networkInterfaces|[]

List of host network interfaces currently defined on the host.

6.115.1.9 nameServers (read-only)

wstring IHost::nameServers]]

The list of nameservers registered in host’s name resolving system.

6.115.1.10 domainName (read-only)

wstring IHost::domainName

Domain name used for name resolving.

6.115.1.11 searchStrings (read-only)

wstring IHost::searchStrings|[]

Search string registered for name resolving.
6.115.1.12 processorCount (read-only)
unsigned long IHost::processorCount

Number of (logical) CPUs installed in the host system.
6.115.1.13 processorOnlineCount (read-only)
unsigned long IHost::processorOnlineCount

Number of (logical) CPUs online in the host system.
6.115.1.14 processorCoreCount (read-only)
unsigned long IHost::processorCoreCount

Number of physical processor cores installed in the host system.

175

6 Classes (interfaces)

6.115.1.15 processorOnlineCoreCount (read-only)

unsigned long IHost::processorOnlineCoreCount

Number of physical processor cores online in the host system.

6.115.1.16 hostDrives (read-only)

IHostDrive IHost::hostDrives|[]

List of the host drive available to use in the VirtualBox.

6.115.1.17 memorySize (read-only)

unsigned long IHost::memorySize

Amount of system memory in megabytes installed in the host system.

6.115.1.18 memoryAvailable (read-only)

unsigned long IHost::memoryAvailable

Available system memory in the host system.

6.115.1.19 operatingSystem (read-only)

wstring IHost::operatingSystem

Name of the host system’s operating system.

6.115.1.20 OSVersion (read-only)

wstring IHost::0SVersion

Host operating system’s version string.

6.115.1.21 UTCTime (read-only)

long long IHost::UTCTime

Returns the current host time in milliseconds since 1970-01-01 UTC.

6.115.1.22 acceleration3DAvailable (read-only)

boolean IHost::acceleration3DAvailable

Returns true when the host supports 3D hardware acceleration.

6.115.1.23 videolnputDevices (read-only)

IHostVideoInputDevice IHost::videoInputDevices][]

List of currently available host video capture devices.

6.115.1.24 updateHost (read-only)

IUpdateAgent IHost::updateHost

Checks for new VirtualBox host versions.

176

6 Classes (interfaces)

6.115.1.25 updateExtPack (read-only)

IUpdateAgent IHost::updateExtPack

Checks for new VirtualBox Extension Pack versions.

6.115.1.26 updateGuestAdditions (read-only)

IUpdateAgent IHost::updateGuestAdditions

Checks for new Guest Additions versions.

6.115.2 addUSBDeviceSource

void IHost::addUSBDeviceSource(
[in] wstring backend,
[in] wstring id,
[in] wstring address,
[in] wstring propertyNames|[],
[in] wstring propertyValues[])

backend The backend to use as the new device source.
id Unique ID to identify the source.

address Address to use, the format is dependent on the backend. For USB/IP backends for
example the notation is host[:port].

propertyNames Array of property names for more detailed configuration. Not used at the
moment.

propertyValues Array of property values for more detailed configuration. Not used at the mo-
ment.

Adds a new USB device source.

6.115.3 createHostOnlyNetworkiInterface

IProgress IHost::createHostOnlyNetworkInterface(
[out] IHostNetworkInterface hostInterface)

hostinterface Created host interface object.

Creates a new adapter for Host Only Networking.
If this method fails, the following error codes may be reported:

e E_INVALIDARG: Host network interface name already exists.

6.115.4 createUSBDeviceFilter

IHostUSBDeviceFilter IHost::createUSBDeviceFilter(
[in] wstring name)

name Filter name. See IUSBDeviceFilter::name for more information.

Creates a new USB device filter. All attributes except the filter name are set to empty (any
match), active is false (the filter is not active).

The created filter can be added to the list of filters using insertUSBDeviceFilter().

See also: USBDeviceFilters[]

177

6 Classes (interfaces)

6.115.5 findHostDVDDrive

IMedium IHost::findHostDVDDrive(
[in] wstring name)

name Name of the host drive to search for

Searches for a host DVD drive with the given name.
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: Given name does not correspond to any host drive.

6.115.6 findHostFloppyDrive

IMedium IHost::findHostFloppyDrive(
[in] wstring name)

name Name of the host floppy drive to search for

Searches for a host floppy drive with the given name.
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: Given name does not correspond to any host floppy drive.

6.115.7 findHostNetworkinterfaceByld

IHostNetworkInterface IHost::findHostNetworkInterfaceById(
[in] uuid id)

id GUID of the host network interface to search for.

Searches through all host network interfaces for an interface with the given GUID.

Note: The method returns an error if the given GUID does not correspond to any host
network interface.

6.115.8 findHostNetworkinterfaceByName

IHostNetworkInterface IHost::findHostNetworkInterfaceByName (
[in] wstring name)

name Name of the host network interface to search for.

Searches through all host network interfaces for an interface with the given name.

Note: The method returns an error if the given name does not correspond to any host
network interface.

6.115.9 findHostNetworkinterfacesOfType

IHostNetworkInterface[] IHost::findHostNetworkInterfacesOfType(
[in] HostNetworkInterfaceType type)

type type of the host network interfaces to search for.

Searches through all host network interfaces and returns a list of interfaces of the specified
type

178

6 Classes (interfaces)

6.115.10 findUSBDeviceByAddress

IHostUSBDevice IHost::findUSBDeviceByAddress (
[in] wstring name)

name Address of the USB device (as assigned by the host) to search for.

Searches for a USB device with the given host address.
See also: IUSBDevice::address
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: Given name does not correspond to any USB device.

6.115.11 findUSBDeviceByld

IHostUSBDevice IHost::findUSBDeviceById (
[in] uuid id)

id UUID of the USB device to search for.

Searches for a USB device with the given UUID.
See also: IUSBDevice::id
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: Given id does not correspond to any USB device.

6.115.12 generateMACAddress

wstring IHost::generateMACAddress()

Generates a valid Ethernet MAC address, 12 hexadecimal characters.

6.115.13 getProcessorDescription

wstring IHost::getProcessorDescription(
[in] unsigned long cpuld)

cpuld Identifier of the CPU.

exact CPU.

Note: The current implementation might not necessarily return the description for this

Query the model string of a specified host CPU.

6.115.14 getProcessorFeature

boolean IHost::getProcessorFeature(
[in] ProcessorFeature feature)

feature CPU Feature identifier.

Query whether a CPU feature is supported or not.

179

6 Classes (interfaces)

6.115.15 getProcessorSpeed

unsigned long IHost::getProcessorSpeed(
[in] unsigned long cpuld)

cpuld Identifier of the CPU.

Query the (approximate) maximum speed of a specified host CPU in Megahertz.

6.115.16 insertUSBDeviceFilter

void IHost::insertUSBDeviceFilter(
[in] unsigned long position,
[in] IHostUSBDeviceFilter filter)

position Position to insert the filter to.
filter USB device filter to insert.

Inserts the given USB device to the specified position in the list of filters.
Positions are numbered starting from 0. If the specified position is equal to or greater than the
number of elements in the list, the filter is added at the end of the collection.

Note: Duplicates are not allowed, so an attempt to insert a filter already in the list is
an error.

Note: If USB functionality is not available in the given edition of VirtualBox, this
method will set the result code to E_NOTIMPL.

See also: USBDeviceFilters[]
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_OBJECT_STATE: USB device filter is not created within this VirtualBox
instance.

e E_INVALIDARG: USB device filter already in list.

6.115.17 isExecutionEngineSupported

boolean IHost::isExecutionEngineSupported(
[in] CPUArchitecture cpuArchitecture,
[in] VMExecutionEngine executionEngine)

cpuArchitecture The guest CPU architecture to check the execution engine for.
executionEngine The execution engine to check.

Returns whether the given execution engine is supported on the host. This is primarily to check
whether the native API is supported (think of Hyper-V not being available due to not running in
a Hyper-V root partition).

180

6 Classes (interfaces)

6.115.18 removeHostOnlyNetworkinterface

IProgress IHost::removeHostOnlyNetworkInterface(
[in] uuid id)

id Adapter GUID.

Removes the given Host Only Networking interface.
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: No host network interface matching id found.

6.115.19 removeUSBDeviceFilter

void IHost::removeUSBDeviceFilter(
[in] unsigned long position)

position Position to remove the filter from.

Removes a USB device filter from the specified position in the list of filters.
Positions are numbered starting from 0. Specifying a position equal to or greater than the
number of elements in the list will produce an error.

Note: If USB functionality is not available in the given edition of VirtualBox, this
method will set the result code to E_NOTIMPL.

See also: USBDeviceFilters[]
If this method fails, the following error codes may be reported:

e E_INVALIDARG: USB device filter list empty or invalid position.

6.115.20 removeUSBDeviceSource

void IHost::removeUSBDeviceSource(
[in] wstring id)

id The identifier used when the source was added.

Removes a previously added USB device source.

6.116 IHostAudioDevice

Represents an audio device provided by the host OS.

6.116.1 Attributes
6.116.1.1 id (read-only)

uuid IHostAudioDevice::id

Unique device ID.

6.116.1.2 name (read/write)

wstring IHostAudioDevice::name

Friendly name of the device.

181

6 Classes (interfaces)

6.116.1.3 type (read/write)

AudioDeviceType IHostAudioDevice::type

Device type.

6.116.1.4 usage (read/write)

AudioDirection IHostAudioDevice::usage

Usage type of the device.

6.116.1.5 defaultin (read/write)

boolean IHostAudioDevice::defaultln

Whether this device is being marked as the default input device by the host OS.

6.116.1.6 defaultOut (read/write)

boolean IHostAudioDevice::defaultOut

Whether this device is being marked as the default output device by the host OS.

6.116.1.7 isHotPlug (read/write)

boolean IHostAudioDevice::isHotPlug

Whether this device is being marked as a hotplug device, i.e. can be removed from the system.

6.116.1.8 state (read/write)

AudioDeviceState IHostAudioDevice::state

Current device state.

6.116.2 getProperty

wstring IHostAudioDevice::getProperty/(
[in] wstring key)

key Name of the key to get.

Returns an audio specific property string.
If the requested data key does not exist, this function will succeed and return an empty string
in the value argument.

6.117 IHostAudioDeviceChangedEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

Notification when a host audio device state has changed.

182

6 Classes (interfaces)

6.117.1 Attributes
6.117.1.1 device (read-only)

IHostAudioDevice IHostAudioDeviceChangedEvent::device

Host audio device that has changed.

6.117.1.2 new (read-only)

boolean IHostAudioDeviceChangedEvent::new

true if the host device is a newly detected device, false if not.

6.117.1.3 state (read-only)

AudioDeviceState IHostAudioDeviceChangedEvent::state

New audio device state.

6.117.1.4 error (read-only)

IVirtualBoxErrorInfo IHostAudioDeviceChangedEvent::error

null on success or an error message object on failure.

6.118 IHostDrive

The IHostDrive interface represents the drive of the physical machine. It is not a complete
medium description and, therefore, it is not IMedium based. The interface is used to get infor-
mation about a host drive and its partitioning.

Note: The object operates in limited mode if the user cannot open the drive and parse
the partition table. In limited mode on the drivePath and model attributes can be
accessed, the rest will fail with E_ ACCESSDENIED.

6.118.1 Attributes
6.118.1.1 drivePath (read-only)

wstring IHostDrive::drivePath

The path of the drive. Platform dependent.
6.118.1.2 partitioningType (read-only)
PartitioningType IHostDrive::partitioningType

The scheme of the partitions the disk has.

6.118.1.3 uuid (read-only)

uuid IHostDrive: :uuid

The GUID of the disk.

183

6 Classes (interfaces)

6.118.1.4 sectorSize (read-only)

unsigned long IHostDrive::sectorSize

The size of the sector in bytes.

6.118.1.5 size (read-only)

long long IHostDrive::size

The size of the disk in bytes.

6.118.1.6 model (read-only)

wstring IHostDrive: :model

The model string of the drive if available.

6.118.1.7 partitions (read-only)

IHostDrivePartition IHostDrive::partitions[]

List of partitions available on the host drive.

6.119 IHostDrivePartition

Note: With the web service, this interface is mapped to a structure. Attributes that
return this interface will not return an object, but a complete structure containing the
attributes listed below as structure members.

The IHostDrivePartition interface represents the partition of the host drive. To enumerate all
available drives partitions in the host, use the IHost::hostDrives[] attribute.

6.119.1 Attributes
6.119.1.1 number (read-only)

unsigned long IHostDrivePartition::number

The number of the partition. Represents the system number of the partition, e.g. /dev/sdX in
the linux, where X is the number returned.

6.119.1.2 size (read-only)

long long IHostDrivePartition::size
The partition size in bytes.

6.119.1.3 start (read-only)

long long IHostDrivePartition::start

The start byte offset of this partition in bytes relative to the beginning of the hard disk.

184

6 Classes (interfaces)

6.119.1.4 type (read-only)

PartitionType IHostDrivePartition::type

A translation of typeMBR and typeUuid when possible, otherwise set to Unknown.

6.119.1.5 active (read-only)

boolean IHostDrivePartition::active

The partition is bootable when TRUE.

6.119.1.6 typeMBR (read-only)

unsigned long IHostDrivePartition::typeMBR

The raw MBR partition type, O for non-MBR disks.

6.119.1.7 startCylinder (read-only)

unsigned long IHostDrivePartition::startCylinder

The cylinder (0..1023) of the first sector in the partition on an MBR disk, zero for not an MBR
disk.

6.119.1.8 startHead (read-only)

unsigned long IHostDrivePartition::startHead

The head (0..255) of the first sector in the partition on an MBR disk, zero for not an MBR disk.

6.119.1.9 startSector (read-only)

unsigned long IHostDrivePartition::startSector

The sector (0..63) of the first sector in the partition on an MBR disk, zero for not an MBR disk.

6.119.1.10 endCylinder (read-only)

unsigned long IHostDrivePartition::endCylinder

The cylinder (0..1023) of the last sector (inclusive) in the partition on an MBR disk, zero for
not an MBR disk.

6.119.1.11 endHead (read-only)

unsigned long IHostDrivePartition::endHead

The head (0..255) of the last sector (inclusive) in the partition on an MBR disk, zero for not
an MBR disk.

6.119.1.12 endSector (read-only)

unsigned long IHostDrivePartition::endSector

The sector (1..63) of the last sector (inclusive) in the partition on an MBR disk, zero for not
an MBR disk.

185

6 Classes (interfaces)

6.119.1.13 typeUuid (read-only)

uuid IHostDrivePartition::typeUuid

The partition type when GUID partitioning scheme is used, NULL UUID value for not a GPT
disks.

6.119.1.14 uuid (read-only)

uuid IHostDrivePartition::uuid

The GUID of the partition when GUID partitioning scheme is used, NULL UUID value for not a
GPT disks.

6.119.1.15 name (read-only)

wstring IHostDrivePartition::name

The name of the partition if GPT partitioning is used, empty if not a GPT disk.

6.120 IHostNameResolutionConfigurationChangeEvent
(IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

6.120.1 Attributes
6.120.1.1 midiDoesNotLikeEmptyinterfaces (read-only)

boolean IHostNameResolutionConfigurationChangeEvent::midlDoesNotLikeEmptyInterfaces

6.121 IHostNetworkinterface

Represents one of host’s network interfaces. IP V6 address and network mask are strings
of 32 hexadecimal digits grouped by four. Groups are separated by colons. For example,
fe80:0000:0000:0000:021e:c2ff:fed2:b030.

6.121.1 Attributes
6.121.1.1 name (read-only)

wstring IHostNetworkInterface: :name

Returns the host network interface name.

6.121.1.2 shortName (read-only)

wstring IHostNetworkInterface::shortName

Returns the host network interface short name.

186

6 Classes (interfaces)

6.121.1.3 id (read-only)

uuid IHostNetworkInterface::id

Returns the interface UUID.

6.121.1.4 networkName (read-only)

wstring IHostNetworkInterface: :networkName

Returns the name of a virtual network the interface gets attached to.

6.121.1.5 DHCPEnabled (read-only)

boolean IHostNetworkInterface::DHCPEnabled

Specifies whether the DHCP is enabled for the interface.

6.121.1.6 IPAddress (read-only)

wstring IHostNetworkInterface::IPAddress

Returns the IP V4 address of the interface.

6.121.1.7 networkMask (read-only)

wstring IHostNetworkInterface::networkMask

Returns the network mask of the interface.

6.121.1.8 IPV6Supported (read-only)

boolean IHostNetworkInterface::IPV6Supported

Specifies whether the IP V6 is supported/enabled for the interface.

6.121.1.9 IPV6Address (read-only)

wstring IHostNetworkInterface::IPV6Address

Returns the IP V6 address of the interface.

6.121.1.10 IPV6NetworkMaskPrefixLength (read-only)

unsigned long IHostNetworkInterface::IPV6NetworkMaskPrefixLength

Returns the length IP V6 network mask prefix of the interface.

6.121.1.11 hardwareAddress (read-only)

wstring IHostNetworkInterface::hardwareAddress

Returns the hardware address. For Ethernet it is MAC address.

6.121.1.12 mediumType (read-only)

HostNetworkInterfaceMediumType IHostNetworkInterface::mediumType

Type of protocol encapsulation used.

187

6 Classes (interfaces)

6.121.1.13 status (read-only)

HostNetworkInterfaceStatus IHostNetworkInterface::status

Status of the interface.

6.121.1.14 interfaceType (read-only)

HostNetworkInterfaceType IHostNetworkInterface::interfaceType

specifies the host interface type.

6.121.1.15 wireless (read-only)

boolean IHostNetworkInterface::wireless

Specifies whether the interface is wireless.

6.121.2 DHCPRediscover

void IHostNetworkInterface: :DHCPRediscover()

refreshes the IP configuration for DHCP-enabled interface.

6.121.3 enableDynamiclPConfig

void IHostNetworkInterface::enableDynamicIPConfig()

enables the dynamic IP configuration.

6.121.4 enableStaticlPConfig

void IHostNetworkInterface::enableStaticIPConfig(
[in] wstring IPAddress,
[in] wstring networkMask)

IPAddress IP address.

networkMask network mask.

sets and enables the static IP V4 configuration for the given interface.

6.121.5 enableStaticlPConfigV6

void IHostNetworkInterface::enableStaticIPConfigV6(

[in] wstring IPV6Address,

[in] unsigned long IPV6NetworkMaskPrefixLength)
IPV6Address IP address.
IPV6NetworkMaskPrefixLength network mask.

sets and enables the static IP V6 configuration for the given interface.

188

6 Classes (interfaces)

6.122 IHostOnlyNetwork
6.122.1 Attributes

6.122.1.1 networkName (read/write)

wstring IHostOnlyNetwork::networkName

TBD: User-friendly, descriptive name of host-only network. For example, “Host-only network
192.168.56.0”.

6.122.1.2 enabled (read/write)

boolean IHostOnlyNetwork::enabled

6.122.1.3 networkMask (read/write)

wstring IHostOnlyNetwork::networkMask

specifies network mask

6.122.1.4 hostIP (read-only)

wstring IHostOnlyNetwork::hostIP
host IP address, which usually is the lower IP address of DHCP range.
6.122.1.5 lowerlP (read/write)
wstring IHostOnlyNetwork::lowerIP
specifies from IP address in DHCP address range
6.122.1.6 upperIP (read/write)
wstring IHostOnlyNetwork: :upperIP
specifies to IP address in DHCP address range
6.122.1.7 id (read/write)
uuid IHostOnlyNetwork::id

Host-only network ID.

6.123 IHostPCIDevicePlugEvent (IMachineEvent)

Note: This interface extends IMachineEvent and therefore supports all its methods and
attributes as well.

Notification when host PCI device is plugged/unplugged. Plugging usually takes place on VM
startup, unplug - when IMachine::detachHostPCIDevice() is called.
See also: IMachine::detachHostPCIDevice()

189

6 Classes (interfaces)

6.123.1 Attributes
6.123.1.1 plugged (read-only)

boolean IHostPCIDevicePlugEvent::plugged

If device successfully plugged or unplugged.

6.123.1.2 success (read-only)

boolean IHostPCIDevicePlugEvent::success

If operation was successful, if false - 'message’ attribute may be of interest.

6.123.1.3 attachment (read-only)

IPCIDeviceAttachment IHostPCIDevicePlugEvent::attachment

Attachment info for this device.

6.123.1.4 message (read-only)

wstring IHostPCIDevicePlugEvent::message

Optional error message.

6.124 IHostUSBDevice (IUSBDevice)

Note: This interface extends IUSBDevice and therefore supports all its methods and
attributes as well.

The IHostUSBDevice interface represents a physical USB device attached to the host computer.
Besides properties inherited from IUSBDevice, this interface adds the state property that holds
the current state of the USB device.
See also: IHost::USBDevices[], IHost::USBDeviceFilters[]
6.124.1 Attributes
6.124.1.1 state (read-only)

USBDeviceState IHostUSBDevice::state

Current state of the device.

6.125 IHostUSBDeviceFilter (lUSBDeviceFilter)

Note: This interface extends IUSBDeviceFilter and therefore supports all its methods
and attributes as well.

The IHostUSBDeviceFilter interface represents a global filter for a physical USB device used by
the host computer. Used indirectly in IHost::USBDeviceFilters[].

Using filters of this type, the host computer determines the initial state of the USB device after
it is physically attached to the host’s USB controller.

190

6 Classes (interfaces)

Note: The IUSBDeviceFilter::remote attribute is ignored by this type of filters, because
it makes sense only for machine USB filters.

See also: IHost::USBDeviceFilters[]

6.125.1 Attributes
6.125.1.1 action (read/write)

USBDeviceFilterAction IHostUSBDeviceFilter::action

Action performed by the host when an attached USB device matches this filter.

6.126 IHostUpdateAgent (IUpdateAgent)

Note: This interface extends IUpdateAgent and therefore supports all its methods and
attributes as well.

Implementation of the [UpdateAgent object for VirtualBox host updates.

6.126.1 Attributes
6.126.1.1 midiDoesNotLikeEmptyinterfaces (read-only)

boolean IHostUpdateAgent::midlDoesNotLikeEmptyInterfaces

6.127 IHostVideolnputDevice

Represents one of host’s video capture devices, for example a webcam.

6.127.1 Attributes
6.127.1.1 name (read-only)

wstring IHostVideoInputDevice::name

User friendly name.

6.127.1.2 path (read-only)

wstring IHostVideoInputDevice::path

The host path of the device.

6.127.1.3 alias (read-only)

wstring IHostVideoInputDevice::alias

An alias which can be used for IEmulatedUSB::webcamAttach()

6.128 IHostX86

The x86-specific interface for the physical host machine.

191

6 Classes (interfaces)

6.128.1 getProcessorCPUIDLeaf

void IHostX86::getProcessorCPUIDLeaf (
[in] unsigned long cpuld,
[in] unsigned long leaf,
[in] unsigned long sublLeaf,
[out] unsigned long valEax,
[out] unsigned long valEbx,
[out] unsigned long valEcx,
[out] unsigned long valEdx)

cpuld Identifier of the CPU. The CPU must be online.

exact CPU.

Note: The current implementation might not necessarily return the description for this

leaf CPUID leaf index (eax).

subLeaf CPUID leaf sub index (ecx). This currently only applies to cache information on Intel
CPUs. Use 0 if retrieving values for IPlatformX86::setCPUIDLeaf().

valEax CPUID leaf value for register eax.
valEbx CPUID leaf value for register ebx.
valEcx CPUID leaf value for register ecx.

valEdx CPUID leaf value for register edx.

Returns the CPU cpuid information for the specified leaf.

6.129 linternalMachineControl

’ Note: This interface is not supported in the web service.

6.129.1 authenticateExternal

void IInternalMachineControl::authenticateExternal(
[in] wstring authParams[],
[out] wstring result)
authParams The auth parameters, credentials, etc.
result The authentification result.

Verify credentials using the external auth library.

6.129.2 autoCaptureUSBDevices

void IInternalMachineControl::autoCaptureUSBDevices()

Requests a capture all matching USB devices attached to the host. When the request is com-
pleted, the VM process will get a [InternalSessionControl::onUSBDeviceAttach() notification per

every captured device.

192

6 Classes (interfaces)

6.129.3 beginPowerUp

void IInternalMachineControl::beginPowerUp(
[in] IProgress progress)

progress

Tells VBoxSVC that IConsole::powerUp() is under ways and gives it the progress object that
should be part of any pending IMachine::launchVMProcess() operations. The progress object
may be called back to reflect an early cancelation, so some care have to be taken with respect to
any cancelation callbacks. The console object will call endPowerUp() to signal the completion of
the progress object.

6.129.4 beginPoweringDown

void IInternalMachineControl::beginPoweringDown (
[out] IProgress progress)

progress Progress object created by VBoxSVC to wait until the VM is powered down.

Called by the VM process to inform the server it wants to stop the VM execution and power
down.

6.129.5 captureUSBDevice

void IInternalMachineControl::captureUSBDevice(
[in] uuid id,
[in] wstring captureFilename)

id
captureFilename

Requests a capture of the given host USB device. When the request is completed, the VM
process will get a IInternalSessionControl::onUSBDeviceAttach() notification.

6.129.6 detachAllUSBDevices

void IInternalMachineControl::detachAllUSBDevices (
[in] boolean done)

done

Notification that a VM that is being powered down. The done parameter indicates whether
which stage of the power down we’re at. When done = false the VM is announcing its inten-
tions, while when done = true the VM is reporting what it has done.

Note: In the done = true case, the server must run its own filters and filters of all VMs
but this one on all detach devices as if they were just attached to the host computer.

193

6 Classes (interfaces)

6.129.7 detachUSBDevice

void IInternalMachineControl::detachUSBDevice(
[in] uuid id,
[in] boolean done)

id

done

Notification that a VM is going to detach (done = false) or has already detached (done =
true) the given USB device. When the done = true request is completed, the VM process will
get a IInternalSessionControl::onUSBDeviceDetach() notification.

Note: In the done = true case, the server must run its own filters and filters of all VMs
but this one on the detached device as if it were just attached to the host computer.

6.129.8 ejectMedium

IMediumAttachment IInternalMachineControl::ejectMedium(
[in] IMediumAttachment attachment)

attachment The medium attachment where the eject happened.

Tells VBoxSVC that the guest has ejected the medium associated with the medium attachment.

6.129.9 endPowerUp

void IInternalMachineControl::endPowerUp(
[in] long result)

result

Tells VBoxSVC that IConsole::powerUp() has completed. This method may query status infor-
mation from the progress object it received in beginPowerUp() and copy it over to any in-progress
IMachine::launchVMProcess() call in order to complete that progress object.

6.129.10 endPoweringDown

void IInternalMachineControl::endPoweringDown (
[in] long result,
[in] wstring errMsg)

result S_OK to indicate success.

errMsg human readable error message in case of failure.

Called by the VM process to inform the server that powering down previously requested by
#beginPoweringDown is either successfully finished or there was a failure.
If this method fails, the following error codes may be reported:

e VBOX_E_FILE_ERROR: Settings file not accessible.

e VBOX_E_XML_ERROR: Could not parse the settings file.

194

6 Classes (interfaces)

6.129.11 finishOnlineMergeMedium

void IInternalMachineControl::finishOnlineMergeMedium()

Gets called by IInternalSessionControl::onlineMergeMedium(). All necessary state informa-
tion is available at the called object.

6.129.12 lockMedia

void IInternalMachineControl::lockMedia()

Locks all media attached to the machine for writing and parents of attached differencing media
(if any) for reading. This operation is atomic so that if it fails no media is actually locked.

This method is intended to be called when the machine is in Starting or Restoring state. The
locked media will be automatically unlocked when the machine is powered off or crashed.

6.129.13 onSessionEnd

IProgress IInternalMachineControl::onSessionEnd(
[in] ISession session)

session Session that is being closed

Triggered by the given session object when the session is about to close normally.

6.129.14 pullGuestProperties

void IInternalMachineControl::pullGuestProperties(
[out] wstring names[],
[out] wstring values[],
[out] long long timestamps|[],
[out] wstring flags[])

names The names of the properties returned.

values The values of the properties returned. The array entries match the corresponding entries
in the name array.

timestamps The timestamps of the properties returned. The array entries match the corre-
sponding entries in the name array.

flags The flags of the properties returned. The array entries match the corresponding entries in
the name array.

Get the list of the guest properties matching a set of patterns along with their values, times-
tamps and flags and give responsibility for managing properties to the console.

6.129.15 pushGuestProperty

void IInternalMachineControl::pushGuestProperty(
[in] wstring name,
[in] wstring value,
[in] long long timestamp,
[in] wstring flags,
[in] boolean fWasDeleted)

name The name of the property to be updated.

195

6 Classes (interfaces)

value The value of the property.

timestamp The timestamp of the property.

flags The flags of the property.

fWasDeleted The flag which indicates if property was deleted.

Update a single guest property in IMachine.

6.129.16 reportVmStatistics

void IInternalMachineControl::reportVmStatistics(
[in] unsigned long validStats,
[in] unsigned long cpulUser,
[in] unsigned long cpuKernel,
[in] unsigned long cpuldle,
[in] unsigned long memTotal,
[in] unsigned long memFree,
[in] unsigned long memBalloon,
[in] unsigned long memShared,
[in] unsigned long memCache,
[in] unsigned long pagedTotal,
[in] unsigned long memAllocTotal,
[in] unsigned long memFreeTotal,
[in] unsigned long memBalloonTotal,
[in] unsigned long memSharedTotal,
[in] unsigned long vmNetRx,
[in] unsigned long vmNetTx)

validStats Mask defining which parameters are valid. For example: 0x11 means that cpuldle
and XXX are valid. Other parameters should be ignored.

cpuUser Percentage of processor time spent in user mode as seen by the guest.
cpuKernel Percentage of processor time spent in kernel mode as seen by the guest.
cpuldle Percentage of processor time spent idling as seen by the guest.
memTotal Total amount of physical guest RAM.

memFree Free amount of physical guest RAM.

memBalloon Amount of ballooned physical guest RAM.

memShared Amount of shared physical guest RAM.

memCache Total amount of guest (disk) cache memory.

pagedTotal Total amount of space in the page file.

memAllocTotal Total amount of memory allocated by the hypervisor.
memFreeTotal Total amount of free memory available in the hypervisor.
memBalloonTotal Total amount of memory ballooned by the hypervisor.
memSharedTotal Total amount of shared memory in the hypervisor.
vmNetRx Network receive rate for VM.

vmNetTx Network transmit rate for VM.

Passes statistics collected by VM (including guest statistics) to VBoxSVC.

196

6 Classes (interfaces)

6.129.17 runUSBDeviceFilters

void IInternalMachineControl::runUSBDeviceFilters(
[in] IUSBDevice device,
[out] boolean matched,
[out] unsigned long maskedInterfaces)

device
matched
maskedInterfaces

Asks the server to run USB devices filters of the associated machine against the given USB
device and tell if there is a match.

Note: Intended to be used only for remote USB devices. Local ones don’t require to
call this method (this is done implicitly by the Host and USBProxyService).

6.129.18 unlockMedia
void IInternalMachineControl::unlockMedia()

Unlocks all media previously locked using lockMedia().
This method is intended to be used with teleportation so that it is possible to teleport between
processes on the same machine.

6.129.19 updateState

void IInternalMachineControl::updateState(
[in] MachineState state)

state

Updates the VM state.

Note: This operation will also update the settings file with the correct information
about the saved state file and delete this file from disk when appropriate.

6.130 linternalProgressControl

’ Note: This interface is not supported in the web service.

6.130.1 notifyComplete

void IInternalProgressControl::notifyComplete(
[in] long resultCode,
[in] IVirtualBoxErrorInfo errorInfo)

resultCode
errorinfo

Internal method, not to be called externally.

197

6 Classes (interfaces)

6.130.2 notifyPointOfNoReturn

void IInternalProgressControl::notifyPointOfNoReturn()

Internal method, not to be called externally.

6.130.3 setCurrentOperationProgress

void IInternalProgressControl::setCurrentOperationProgress(
[in] unsigned long percent)

percent

Internal method, not to be called externally.

6.130.4 setNextOperation

void IInternalProgressControl::setNextOperation(
[in] wstring nextOperationDescription,
[in] unsigned long nextOperationsWeight)

nextOperationDescription
nextOperationsWeight

Internal method, not to be called externally.

6.130.5 waitForOtherProgressCompletion

void IInternalProgressControl::waitForOtherProgressCompletion(
[in] IProgress progressOther,
[in] unsigned long timeoutMS)

progressOther Other progress object to be “cloned”.
timeoutMS Timeout (in ms). Pass O for an infinite timeout.

Internal method, not to be called externally.

Waits until the other task is completed (including all sub-operations) and forward all changes
from the other progress to this progress. This means sub-operation number, description, percent
and so on.

The caller is responsible for having at least the same count of sub-operations in this progress
object as there are in the other progress object.

If the other progress object supports cancel and this object gets any cancel request (when here
enabled as well), it will be forwarded to the other progress object.

Error information is automatically preserved (by transferring it to the current thread’s error
information). If the caller wants to set it as the completion state of this progress it needs to be
done separately.

If this method fails, the following error codes may be reported:

e VBOX_E_TIMEOUT: Waiting time has expired.

6.131 linternalSessionControl

’ Note: This interface is not supported in the web service.

198

6 Classes (interfaces)

6.131.1 Attributes
6.131.1.1 PID (read-only)

unsigned long IInternalSessionControl::PID

PID of the process that has created this Session object.

6.131.1.2 remoteConsole (read-only)

IConsole IInternalSessionControl::remoteConsole

Returns the console object suitable for remote control.

6.131.1.3 nominalState (read-only)

MachineState IInternalSessionControl::nominalState

Returns suitable machine state for the VM execution state. Useful for choosing a sensible ma-
chine state after a complex operation which failed or otherwise resulted in an unclear situation.

6.131.2 accessGuestProperty

void IInternalSessionControl::accessGuestProperty(

[in] wstring name,

[in] wstring value,

[in] wstring flags,

[in] unsigned long accessMode,

[out] wstring retValue,

[out] long long retTimestamp,

[out] wstring retFlags)

name Name of guest property.

value Value of guest property.

flags Flags of guest property.

accessMode 0 = get, 1 = set, 2 = delete.

retValue When getting: Value of guest property.
retTimestamp When getting: Timestamp of guest property.

retFlags When getting: Flags of guest property.

Called by IMachine::getGuestProperty() and by IMachine::setGuestProperty() in order to read
and modify guest properties.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Machine session is not open.

e VBOX_E_INVALID_OBJECT_STATE: Session type is not direct.

199

6 Classes (interfaces)

6.131.3 assignRemoteMachine

void IInternalSessionControl::assignRemoteMachine(
[in] IMachine machine,
[in] IConsole console)

machine

console

Assigns the machine and the (remote) console object associated with this remote-type session.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Session state prevents operation.

6.131.4 cancelSaveStateWithReason

void IInternalSessionControl::cancelSaveStateWithReason()

Internal method for cancelling a VM save state. See also: saveStateWithReason()

6.131.5 enableVMMStatistics

void IInternalSessionControl::enableVMMStatistics(
[in] boolean enable)

enable True enables statistics collection.

Enables or disables collection of VMM RAM statistics.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Machine session is not open.

e VBOX_E_INVALID_OBJECT_STATE: Session type is not direct.

6.131.6 enumerateGuestProperties

void IInternalSessionControl::enumerateGuestProperties(
[in] wstring patterns,
[out] wstring keys|[],
[out] wstring values[],
[out] long long timestamps|[],
[out] wstring flags[])

patterns The patterns to match the properties against as a comma-separated string. If this is
empty, all properties currently set will be returned.

keys The key names of the properties returned.

values The values of the properties returned. The array entries match the corresponding entries
in the key array.

timestamps The timestamps of the properties returned. The array entries match the corre-
sponding entries in the key