单位根
定义
这方程的複數根 為次單位根。
單位的 次根有 個:
- 。
本原根
單位的 次根以乘法構成階循環群。它的生成元是 次本原單位根。次本原單位根是,其中和互質。次本原單位根數目為歐拉函數。 全体i次单位根对普通乘法作成群,即i次单位根群。所有全体i次单位根群在普通乘法下也可作成群,且这是一个无限交换群,这个无限交换群里的每个元素的阶都有限。
和式
當不小於时,次單位根總和為。這一結果可以用不同的方法證明。一個基本方法是等比級數:
- 。
第二個證法是它們在複平面上構成正多邊形的頂點,而從對稱性知這多邊形的重心在原點。
還有一個證法利用關於方程根與係數的韋達定理,由分圓方程的項係數為零得出。
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.