Variaatioperiaate

Variaatioperiaate on tieteessä käytetty periaate, jota sovelletaan variaatiolaskennassa. Periaatteessa etsitään funktiota, joka maksimoi tai minimoi halutun suureen. Esimerkiksi variaatiolaskennalla voidaan selvittää mikä on köyden muoto, joka on kiinnitetty molemmista päistä. Variaatioperiaatteella minimoidaan köyden potentiaali.

Cornelius Lanczosin mukaan jokainen fysiikan laki, joka voidaan johtaa variaatioperiaatteella, kuvaa itseadjungoituvaa operaattoria. Nämä kuvaukset ovat invariantteja hermiittisessä muunnoksessa.

Esimerkkejä

Lähteet

  • Ekeland, Ivar (1979). "Nonconvex minimization problems". Bulletin of the American Mathematical Society 1: 443–474. doi:10.1090/S0273-0979-1979-14595-6.
  • S T Epstein 1974 "The Variation Method in Quantum Chemistry". (New York: Academic)
  • R.P. Feynman, "The Principle of Least Action", an almost verbatim lecture transcript in Volume 2, Chapter 19 of The Feynman Lectures on Physics, Addison-Wesley, 1965. An introduction in Feynman's inimitable style.
  • C Lanczos, The Variational Principles of Mechanics (Dover Publications)
  • R K Nesbet 2003 "Variational Principles and Methods In Theoretical Physics and Chemistry". (New York: Cambridge U.P.)
  • S K Adhikari 1998 "Variational Principles for the Numerical Solution of Scattering Problems". (New York: Wiley)
  • C G Gray , G Karl G and V A Novikov 1996 Ann. Phys. 251 1.
  • C.G. Gray, G. Karl, and V. A. Novikov, "Progress in Classical and Quantum Variational Principles". 11 December 2003. physics/0312071 Classical Physics.
  • Griffiths, David J. (2004). Introduction to Quantum Mechanics (2nd ed.). Prentice Hall. ISBN 0-13-805326-X.
  • Stephen Wolfram, A New Kind of Science p. 1052
  • John Venables, "The Variational Principle and some applications (Arkistoitu – Internet Archive)". Dept of Physics and Astronomy, Arizona State University, Tempe, Arizona (Graduate Course: Quantum Physics)
  • Andrew James Williamson, "The Variational Principle – Quantum monte carlo calculations of electronic excitations". Robinson College, Cambridge, Theory of Condensed Matter Group, Cavendish Laboratory. September 1996. (dissertation of Doctor of Philosophy)
  • Kiyohisa Tokunaga: ”Part Two Relativistic Canonical Theory of Electromagnetics – Chapter VI Variational Principle for Electromagnetic Field.”, Total Integral for Electromagnetic Canonical Action. . Arkisto 23.7.2011 (viitattu 13.9.2020).
  • Komkov, Vadim (1986) Variational principles of continuum mechanics with engineering applications. Vol. 1. Critical points theory. Mathematics and its Applications, 24. D. Reidel Publishing Co., Dordrecht.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.