Tšebyšovin epäyhtälö

Todennäköisyyslaskennassa Tšebyšovin epäyhtälön mukaan todennäköisyysavaruudessa lähes kaikki todennäköisyysjakauma jakautuu keskiarvon lähelle. Epäyhtälö on nimetty Pafnuti Tšebyšovin mukaan

Yleinen väittämä

Epäyhtälö esitetään usein mittateorian avulla. Tällöin todennäköisyysteoreettinen väittämä on mittateoreettisen väittämän erikoistapaus.

Mittateoreettinen muotoilu

Olkoon (X,Σ,μ) mitta-avaruus ja f laajennettu reaaliarvoinen mitallinen funktio X:ssä. Tällöin kaikilla reaaliluvuilla t > 0,

Yleisemmin, jos g on epänegatiivinen reaaliarvoinen mitallinen funktio, joka ei ole vähenevä f:n määrittelyjoukossa, on

Edellinen väitös seuraa asettamalla

ja valitsemalla f:n asemesta |f|.

Todennäköisyysteoreettinen muotoilu

Olkoon X satunnaismuuttuja odotusarvonaan μ ja äärellisenä varianssinaan σ2. Tällöin kaikilla reaaliluvuilla k > 0,

Ainoastaan tapaukset k > 1 tarjoavat hyödyllistä tietoa.

Esimerkiksi valitsemalla k=√2 huomataan, että vähintään puolet annetun jakauman arvoista sijaitsevat välillä (μ − √2 σ, μ + √2 σ).

Tšebyševin epäyhtälöä käytetään todistamaan heikko suurten lukujen laki.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.