Surjektio
Surjektio on funktio, jonka arvojen joukko "täyttää" maalijoukon. Jokaiseen maalijoukon alkioon voidaan liittää jokin lähtöjoukon alkio. [1]
Muodollisesti kuvaus on surjektio, jos kaikilla on olemassa , jolle .
Jokainen kuvaus saadaan surjektioksi, kun poistetaan maalijoukosta B kaikki alkiot (merkitään siten saatua joukkoa B1), joille ei kuvaudu mitään. Täten on surjektio.
Esimerkkejä
Funktio f: R → R, f(x) = x2, ei ole surjektio, koska esimerkiksi ei ole olemassa reaalilukua x, jolle x2 = −1.
Jos kuitenkin annetaan funktiolle f maalijoukoksi epänegatiivisten reaalilukujen joukko, saadaan kuvaus g: R → [0, ∞[, g(x) = x2, joka on surjektio. Tämä johtuu siitä, että mille tahansa epänegatiiviselle reaaliluvulle y, voidaan ratkaista yhtälö y = x2, josta saadaan tai .
Lähteet
- Häsä, Jokke; Rämö, Johanna: Johdatus abstraktiin algebraan, s. 23. Helsinki: Gaudeamus, 2015. ISBN 978-952-495-361-0.
Kirjallisuutta
- Merikoski, Jorma; Virtanen, Ari; Koivisto, Pertti: Diskreetti matematiikka I. Tampere: Tampereen yliopisto, 2001 (1993). ISBN 951-44-3604-0.