SARS-CoV-2

SARS-CoV-2 (lyhenne englanninkielisistä sanoista ’severe acute respiratory syndrome coronavirus’, ”vakava akuutti hengitystieoireyhtymä -koronavirus”, aiemmin 2019-nCoV[1]) on Kiinan Wuhanista 7. tammikuuta 2020 ensi kerran eristetty koronavirus,[2] joka aiheuttaa taudin nimeltä COVID-19.[3] Virus on aiheuttanut vuoden 2019 lopussa alkaneen SARS-CoV-2-pandemian.[4] SARS-CoV-2 on positiivisjuosteinen RNA-virus eli ssRNA(+)-virus ja beetakoronavirus. SARS-CoV-2:n perimä on samankaltainen SARS:ia aiheuttavan koronaviruksen (SARS-CoV) kanssa.[5]

SARS-CoV-2
Yhdysvaltain tautiviraston (CDC) laatima mallikuva SARS-CoV-2:sta.
Yhdysvaltain tautiviraston (CDC) laatima mallikuva SARS-CoV-2:sta.
Virusten luokittelu
Ryhmä: Virukset
Kunta: Riboviria
Lahko: Nidovirales
Heimo: Coronaviridae Koronavirukset
Alaheimo: Coronavirinae
Suku: Betacoronavirus
Laji: SARS-CoV-2
Katso myös

  SARS-CoV-2 Wikispeciesissä
  SARS-CoV-2 Commonsissa

SARS-CoV-2:ia. Väritetty läpäisyelektronimikroskooppikuva.

Nimet

Virusta on kutsuttu muun muassa nimillä Wuhanin koronavirus, Wuhanin nuha, uusi koronavirus tai yleisesti vain koronavirukseksi.[6]

2019-nCo-virus eli 2019-nCoV (eng. 2019-novel coronavirus, "2019 uusi koronavirus") oli Maailman terveysjärjestö WHO:n aluksi suosittelema väliaikainen nimi virukselle. Nimeämisessä WHO:n pyrkimyksenä oli välttää paikannimiä, jotta nimi ei leimaisi mitään ihmisryhmää.[7] 11. helmikuuta 2020 WHO antoi viruksen aiheuttamalle taudille nimen COVID-19 (eng. coronavirus disease 2019, "koronavirustauti 2019").[8] Samana päivänä Kansainvälinen virusluokituskomitea ICTV antoi virukselle uuden nimen, SARS-CoV-2 (eng. severe acute respiratory syndrome coronavirus 2, "SARS-koronavirus 2"), jota komitea suosittelee käytettävän nimen 2019-nCoV sijaan. Nimi tulee viruksen perimän samankaltaisuudesta SARS:ia aiheuttavan koronaviruksen (SARS-CoV) kanssa.[1]

Rakenne ja invaasiomekanismi

SARS-CoV-2 on seitsemäs tunnettu koronavirus, joka on tarttunut ihmiseen. Muita ovat olleet SARS:ta aiheuttava SARS-CoV ja MERS:ää aiheuttava MERS-CoV sekä HCoV-OC43, HCoV-229E, HCoV-NL63 ja HCoV-HKU1.[9]

Kuten SARS:n ja MERS:n aiheuttajat, SARS-CoV-2 on beetakoronavirus. Se koostuu kapsidista,[5] jota ympäröi rasva-ainekalvo.[10] Viruksen halkaisija on 50–200 nanometriä (metrin miljardisosaa).[9] Kapsidin sisällä on viruksen perimä. SARS-CoV-2 on muiden koronavirusten tapaan positiivinen RNA eli ssRNA(+)-virus. Perimä siis koostuu yhdestä RNA-juosteesta. Juosteen pituus on noin 30 000 nukleotidia. Perimä koodaa 16 rakenteeseen liittymätöntä proteiinia (nsp, eng. non-structural proteins). Esimerkki tällaisesta proteiinista on viruksen monistumiseen vaadittu RNA-replikaasi.[5]

Viruksen koodaamia proteiineja ovat sen lipidikalvon pinnan useat spike-glykoproteiinit. Kussakin on S1- ja S2-proteiinidomeenit.[5] S1- ja S2 domeenit ovat ei-kovalenttisesti toisiinsa sidottuja, mikä auttaa domeenien aktivoitumiseskaskaadissa tarttumisen aikana.[11] Ihmisissä viruksen spike-proteiini 1 (S1) kiinnittyy ensiksi tartuttamansa solun solukalvossa olevaan ACE2 eli angiotensiinikonvertaasi 2 -reseptoriin, joka aiheuttaa proteiinissa konformaatiomuutoksen. Kiinnittymisen jälkeen solunpinnalla ollessa TMPRSS2 (transmembraaniproteaasi seriini 2) reseptoreja, virusproteiini S1 tunnistaa nämä ja aktivoituu uudelleen konfromatiivisesti muuttuen. TMPRSS2 aiheuttaa S1-domeenin karistamisen ja S2-domeenin S2'-reaktiokeskuksen paljastumisen. S2’-keskus auttaa virusta luomaan viruksen ja kohdesolun lipidikalvojen välille fuusiokanavan, jota kautta viruksen RNA pääsee solun sisään.[11] Jos solun solukalvolla ei ole TMPRSS2-reseptoreja, solu ottaa virionin endosytoosilla solun sisään hajotettavaksi. Endosomissa oleva virioni pyritään happamoittamaan, ja prosessissa olevat katepsiinit ja varsinkin katepsiini L voivat aktivoida S1:n karistamisen ja S2’-reaktiokeskuksen paljastumisen ja aiheuttavat lopulta fuusiokanavan syntymisen endosomin ja viruslipidin kanssa.[11] Viruksen RNA:n päätyminen infektoitavien solujen sisään voi siis tapahtua joko endosomaalisen tai solunpinnan kautta, riippuen solujen TMPRSS2 ekspressiosta. Eri SARS-Cov-2-variantit suosivat erilaisia invaasioreittejä.[12] Viruksen RNA vapautuu soluun, jolloin solu monistaa RNA:n ja tuottaa siitä viruksen proteiineja. RNA:t ja proteiinit koostuvat uusiksi viruksiksi, jotka purkautuvat ulos solusta. S1-domeeni voi kiinnittyä myös neuropiliini 1 -proteiiniin (NRP1), jonka kautta virus voi myös tartuttaa solun ACE2:n sijaan.[13]

SARS-Cov-2:ssa on piikkiproteiinissa geenipätkä (ns. furin clevage site) joka puuttuu muista lähisukuisista koronaviruksista. Kyseisen pätkän koodaama proteiini aiheuttaa piikkiproteiinien S1 ja S2 domeenien ei-kovalenttisen sitoutumisen, kun niiden välinen furin cleavage site pilkotaan furiinin toimesta solussa, jossa viruspartikkelit tuotetaan.[11] Tämä piikkiproteiinin pilkkominen kahteen helpottaa viruksen kiinnittymistä ihmisen soluihin, minkä vuoksi virus leviää tehokkaasti ihmisten keskuudessa. Kyseisen geenipätkän ilmaantumista viruksen perimään pidetään edelleen mysteerinä [14]

Alkuperä

The Wall Street Journalin mukaan kolme Kiinan Wuhanissa sijaitsevan virologisen instituutin tutkijaa hakeutui marraskuussa 2019 sairaalaan oireiden vuoksi, jotka olivat samoja kuin SARS-CoV-2-viruksen aiheuttamat. Ensimmäinen diagnosoitu koronavirustapaus vahvistettiin Wuhanissa seuraavan kuukauden 8. päivänä, mutta koronaviruksen oli täytynyt kiertää sitä ennen alueella joitakin viikkoja.[14] Kiinan viranomaiset ilmoittivat myöhemmin, että varhaisin tunnettu tartunta olikin ilmennyt jo 17. marraskuuta[15].

Laboratoriohypoteesi

Wuhanissa sijaitsevan virologisen instituutin tutkimuslaboratorioissa ympättiin vuonna 2019 lepakoiden koronaviruksiin uusia piikkiproteiinisia geenejä, minkä jälkeen tutkittiin, millaisen taudin ne aiheuttivat humanisoiduissa hiirissä. Laboratorion tutkijat kertoivat löytäneensä yli sata uutta hyvin paljon SARSia muistuttavaa virusta, jotka kykenivät tarttumaan ihmisiin. Yhdysvaltalaisviranomaiset olivat havainneet tarkastuskäyntinsä yhteydessä, ettei kyseisen laboratorion henkilökunta ollut riittävän perehtynyttä turvatoimiin, joiden tarkoitusken on varmistaa, etteivät virukset pääse tarttumaan ihmisiin. Asiaa on ollut kuitenkin vaikea selvittää tarkemmin, koska Kiina ei ole suostunut laboratorion työntekijöiden haastatteluihin, eikä instituutti ole luovuttanut tietokantojaan.

Tutkimushanketta rahoittaneen yhdysvaltalaisen Eco Health Alliancen johtaja Peter Daszak järjesti pandemian alussa Lancet-tiedelehteen 27 tutkijan kannanoton, jossa niin sanottu laboratoriohypoteesi eli teoria siitä, että Covid-virus olisi levinnyt wuhanilaisiin esimerkiksi virologisen instituutin työntekijöiden kautta, leimattiin höyrypäiseksi salaliittoteoriaksi. Facebook ryhtyi sensuroimaan tämän johdosta aiheeseen liittyvää keskustelua, eivätkä teoriasta kiinnostuneet tutkijat uskaltaneet käsitellä aihetta leimautumisen pelossa. Toukokuussa 2021 Science-lehdessä julkaistiin kuitenkin vetoomus SARS-CoV-2:n alkuperää koskevan perusteellisen selvityksen käynnistämiseksi, jossa tutkittaisiin puolueettomasti myös sitä mahdollisuutta, että kyseessä olisi laboratoriokarkulainen. Vetoomuksen allekirjoittajat ovat mikrobiologian ja epidemiologian tutkijoita muun muassa Yalen, Stanfordin ja Baselin yliopistoista. Vetoomuksessa on 18 allekirjoittajaa.[16][17]

Luontaisen leviämisen hypoteesi

Julkisuudessa suositun teorian mukaan koronavirus olisi siirtynyt ihmiseen lepakoista jonkin välittäjäeläimen kautta. Välittäjäeläintä ei ole kuitenkaan saatu selville.[18] Erääksi mahdolliseksi väli-isännäksi on esitetty jotakin muurahaiskäpylajia.[19]

Jos virus on syntynyt luontaisen evoluution kautta, sen on täytynyt levitä hyvin nopeasti eläimistä ihmisiin. Syynä on se, että epidemian levitessä ihmisistä vuoden 2020 tammikuun loppuun mennessä löydettyjen SARS-CoV-2-kantojen perimät olivat keskenään yli 99,9-prosenttisesti samankaltaisia vaikka koronavirusten tyypillinen mutaatiotaajuus on nopea eli 1/1000 mutaatiota per nukleotidi per vuosi.[20]

Muita hypoteeseja

Kiinassa on levitelty myös teoriaa, jonka mukaan SARS-CoV-2 ei olisikaan peräisin Wuhanista. Paikallisten asukkaiden keskuudessa on käsitys, että virus olisi tullut Wuhaniin siellä 18.–27. lokakuuta 2019 järjestettyjen Sotilasurheilun maailmankisojen (Military World Games) ansiosta.[21] Virusta on kuitenkin saattanut olla Wuhanissa jo elokuussa 2019.[22]

Toisissa teorioissa on esitetty, että virus olisi saapunut Kiinaan ulkomaisen pakasteruoan mukana. Tälle väittämälle ei ole kuitenkaan olemassa tieteellistä pohjaa. Helsingin yliopiston zoonoosivirologian professori Olli Vapalahden mukaan on ilmeistä, että virus lähti leviämään Wuhanista.[23]

Tutkimus

SARS-CoV-2:n perimän selvittivät sekvensoimalla ensimmäisen kerran kiinalaiset tutkijat, ja se julkaistiin 12. tammikuuta 2020 GenBank-tietokannassa.[24][25] Sekvensoitu virus eristettiin ensimmäisenä kiinalaismieheltä, joka oli 26.12.2019 hengenahdistuksen takia hakeutunut hoitoon Wuhanin keskussairaalaan. Mies oli aiemmin ollut töissä Wuhanin merieläimiä myyvällä torilla.[26] Yksi ensimmäisistä tutkimuksista uuden viruksen aiheuttamasta taudista ja viruksen mahdollisesta alkuperästä julkaistiin Nature-tiedelehdessä 3.2.2020.[27]

Kanadalaistutkijat ilmoittivat, että he onnistuivat eristämään ja kopioimaan viruksen maaliskuussa 2020.[28]

Virus ylittää veri-aivoesteen ja vaikuttaa aivosoluihin. Tätä vaikutusta tutkitaan A. I. Virtanen -instituutissa Neurobiology of Disease -tutkimusryhmässä.[29]

Virusmuunnokset

Kun SARS-CoV-2 leviää maailmalla, siitä kehittyy muunnoksia. Vuoden 2021 tammikuussa tunnetuimmat muunnokset Suomessa olivat Britannian virusmuunnos ja Etelä-Afrikan virusmuunnos. Britannian muunnos levisi nopeammin kuin alkuperäinen Wuhanista lähtenyt virustyyppi.[30] Tätä muunnosta 20B/501Y.V1 tai B.1.1.7 epäiltiin myös tappavammaksi kuin Wuhanin virusta.[31]

Etelä-Afrikassa tavattu virusmuunnos 20C/501Y.V2 tai B.1.351 oli vastustuskykyisempi rokotteille kuin alkuperäinen virusmuoto.[32] Tämä viruslaji tarttuu Britanniankin virusta herkemmin.[33][34] Keväällä 2021 löydettiin uusi Vietnamin muunnos, joka tarttuu helpommin kuin mikään muu virusmuunnos aikaisemmin. Vietnamin muunnos on kehittynyt Britannian virusmuunnoksesta. [35]

Marraskuussa 2021 löydettiin uusi virusmuunnos Etelä-Afrikasta.[36] WHO antoi variantti B.1.1.529 nimeksi Omicron.[36] Omicronilla on paljon uusia mutaatioita ja WHO määritti variantin huolestuttavaksi.[36]

Omicron muunnos muuttui valtamuunnokseksi Skotlannissa muutamassa viikossa eristetyistä näytteistä. Sen nopeaa leviämistä ihmisten välillä sekä ihmisiin, joilla on immunitunnistusta muita muunnoksia vastaan joko sairastetusta taudista tai rokotteista avittaa runsaat mutaatiot sen tarttumiseen liittyvässä piikkiproteiinissa.[12] Mutaatiot vaikuttavat Omicron alavarianttien vasta-aineisiin sitoutuviin alueisiin tehden niistä enemmän resistenttejä jo saadulle immuniteetille muista muunnelmista. ACE2 reseptoriin sitoutuvassa domeenissa huomattiin myös mutaatioita. Myös "furin cleavage site" oli mutatoitunut, vaikuttaen virionien tehokkaampaan kokoamiseen tuottosolujen sisällä.[12] Omicron muunnoksen huomattiin suosivan enemmän endosomaalista invaasioreittiä verrattaessa Delta muunnokseen, joka suosii solunpinnan invaasioreittiä.[12] Tämä johtaa Delta ja Omicron muunnoksien eriävään taudinkuvaan, missä Delta aiheuttaa useammin keuhkotautia ja Omicron enemmän ylätieinfektioita johtuen näiden solutyyppien erillaisten reseptorien ekspressiosta.[12] Tutkimuksessa huomattiin myös, että Delta variantti luo solusitkosta kudoksessa, joka liittyy vakavaan koronatautiin. Omicron muunnos ei tutkimuksessa esittänyt solusitkoksen luomiskykyä.[12]

Katso myös

Lähteet

  1. AE Gorbalenya et al: Severe acute respiratory syndrome-related coronavirus – The species and its viruses, a statement of the Coronavirus Study Group. bioRxiv, 11.2.2020. doi:10.1101/2020.02.07.937862. Artikkelin verkkoversio.
  2. Novel Coronavirus – China World Health Organization. 12.1.2020. Viitattu 13.2.2020. (englanniksi)
  3. Koronavirus COVID-19 Terveyden ja hyvinvoinnin laitos THL. 4.9.2020. Viitattu 9.9.2020. (suomeksi)
  4. WHO julisti koronaviruksen kansainväliseksi terveysuhaksi – kuolonuhreja Kiinassa jo 170 Yle Uutiset. Viitattu 30.1.2020.
  5. JF Chan et al: Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerging Microbes & Infections, 2020, 9. vsk, nro 1, s. 221–236. PubMed:31987001. doi:10.1080/22221751.2020.1719902. ISSN 2222-1751. Artikkelin verkkoversio.
  6. Ajankohtaista Wuhanin koronaviruksesta Terveyden ja hyvinvoinnin laitos. Arkistoitu 29.1.2020. Viitattu 29.1.2020.
  7. J Taylor-Coleman: The coronavirus will finally get a proper name BBC News. 5.2.2020. Viitattu 13.2.2020.
  8. Novel Coronavirus (2019-nCoV) 11.2.2020. World Health Organization. Viitattu 12.2.2020.
  9. N Chen et al: Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet, 2020. doi:10.1016/S0140-6736(20)30211-7. ISSN 0140-6736. Artikkelin verkkoversio.
  10. Cluster of pneumonia cases caused by a novel coronavirus, Wuhan, China European Centre for Disease Prevention and Control. 17.1.2020. Viitattu 31.1.2020.
  11. Cody B. Jackson, Michael Farzan, Bing Chen, Hyeryun Choe: Mechanisms of SARS-CoV-2 entry into cells. Nature Reviews Molecular Cell Biology, 2022-01, 23. vsk, nro 1, s. 3–20. PubMed:34611326. doi:10.1038/s41580-021-00418-x. ISSN 1471-0072. Artikkelin verkkoversio. en
  12. Willett, Brian J. et al.: SARS-CoV-2 Omicron is an immune escape variant with an altered cell entry pathway. Nature Microbiology, 7.7.2022, 7. vsk, nro 8, s. 1161–1179. PubMed:35798890. doi:10.1038/s41564-022-01143-7. ISSN 2058-5276. Artikkelin verkkoversio. en
  13. I Kyrou et al: Not only ACE2—the quest for additional host cell mediators of SARS-CoV-2 infection: Neuropilin-1 (NRP1) as a novel SARS-CoV-2 host cell entry mediator implicated in COVID-19. Signal Transduction and Targeted Therapy, 2021, 6. vsk, nro 21, s. 1–3. doi:10.1038/s41392-020-00460-9. ISSN 2059-3635. Artikkelin verkkoversio.
  14. Jani Kaaron kolumni: Entäpä jos koronavirus onkin laboratoriokarkulainen Wuhanin viruslaboratoriosta? Yle Uutiset. 30.5.2021. Viitattu 19.12.2021.
  15. Josephine Ma: China’s first confirmed Covid-19 case traced back to November 17 South China Morning Post. 13.3.2020. Viitattu 19.3.2020.
  16. Investigate the origins of COVID-19 Science. 14.5.2021. Viitattu 16.5.2021. (englanniksi)
  17. Top researchers are calling for a real investigation into the origin of covid-19 MIT Technology Review. 13.5.2021. Viitattu 16.5.2021. (englanniksi)
  18. MA Shereen et al: COVID-19 infection: origin, transmission, and characteristics of human coronaviruses. Journal of Advanced Research, 2020. doi:10.1016/j.jare.2020.03.005. ISSN 2090-1232. Artikkelin verkkoversio.
  19. KG Andersen et al: The proximal origin of SARS-CoV-2. Nature Medicine, 2020, 26. vsk, nro 4, s. 450–452. doi:10.1038/s41591-020-0820-9. ISSN 1546-170X. Artikkelin verkkoversio.
  20. R Lu et al: Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet, 2020. doi:10.1016/S0140-6736(20)30251-8. ISSN 0140-6736. Artikkelin verkkoversio.
  21. Wuhanilaiset eivät usko, että koronavirus on peräisin Kiinasta: "Naurettavaa roskaa, me uhrasimme paljon" yle.fi. 17.12.2020. Viitattu 21.5.2022.
  22. "Analysis of hospital traffic and search engine data in Wuhan China indicates early disease activity in the Fall of 2019" (8.6.2020). Viitattu 21.5.2022.
  23. Pandemia | Kiina vihjailee nyt koronapandemian saaneen alkunsa ihan muualta kuin Kiinasta: ”Helpoin selitys on yleensä oikein” Helsingin Sanomat. 3.12.2020. Viitattu 11.1.2021.
  24. F Wu et al: GenBank MN908947 Nature. 3.2.2020. Shanghai Public Health Clinical Center & School of Public Health, Fudan University, Shanghai, China. Viitattu 1.9.2020. (englanniksi)
  25. Jon CohenJan: Chinese researchers reveal draft genome of virus implicated in Wuhan pneumonia outbreak Science. 11.1.2020. Viitattu 1.9.2020.
  26. F Wu et al: A new coronavirus associated with human respiratory disease in China. Nature, 2020, 579. vsk, nro 7798, s. 265–269. PubMed:32015508. doi:10.1038/s41586-020-2008-3. ISSN 0028-0836. Artikkelin verkkoversio.
  27. P Zhou et al: A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579. vsk, nro 7798, s. 270–273. PubMed:32015507. doi:10.1038/s41586-020-2012-7. ISSN 0028-0836. Artikkelin verkkoversio.
  28. Ina Kauppinen: Kanadalaistutkijat eristivät uuden koronaviruksen ja tekivät siitä kopioita Ilta-Sanomat. 13.3.2020. Viitattu 14.3.2020.
  29. Pauliina Happo, Koronavirus vaikuttaa aivosoluihin monia reittejä, Yle.fi, uutiset 28.3.2021, viitattu 28.3.2021
  30. BBC: Koronaviruksen uusi muunnos leviää nopeasti Britanniassa Ilta-Sanomat. 14.12.2020. Viitattu 29.1.2021.
  31. Data Hint B.1.1.7 Could Be More Deadly Than Thought The Scientist Magazine®. Viitattu 29.1.2021. (englanniksi)
  32. Uusi tutkimus: rokote ei ehkä täysin tepsi Etelä-Afrikan koronamuunnokseen Ilta-Sanomat. 21.1.2021. Viitattu 29.1.2021.
  33. Teppo Ovaskainen: Huoli Etelä-Afrikan virusmuunnoksesta kasvaa – Löytynyt myös Suomesta Mediuutiset. Viitattu 29.1.2021.
  34. Britanniasta on löytynyt myös toista, vielä tarttuvampaa virusmuotoa – Britannia rajoittaa matkustusta Etelä-Afrikasta Yle Uutiset. Viitattu 29.1.2021.
  35. Covid: Vietnam detects new UK-Indian variant, health officials say BBC News. 29.5.2021. Viitattu 30.5.2021. (englanniksi)
  36. Classification of Omicron (B.1.1.529): SARS-CoV-2 Variant of Concern 26.11.2021. World Health Orgamization (WHO). Viitattu 14.12.2021. (englanniksi)

    Aiheesta muualla

    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.