Organokatalyysi

Organokatalyysi on katalyysin laji, jossa katalyytteinä toimivat metalliyhdisteiden sijaan tyypillisesti molekyylimassaltaan suhteellisen pienikokoiset orgaaniset yhdisteet. Organokatalyyttien tutkimus on herättänyt huomiota erityisesti 2000-luvulla.[1][2][3]

Organokatalyysiluokat

Tyypillisimmät organokatalyytit ovat amiineja tai muita aminoryhmiä sisältäviä yhdisteitä kuten aminohappoja, ureoita, tioureoita tai niiden johdannaisia. Käytettyjä ovat muun muassa kiina-alkaloidit ja proliini. Hyvän enantioylimäärän saavuttamiseksi käytettävä katalyytti on kiraalinen. Organokatalyyttien on todettu olevan tehokkaita muun muassa aldoliadditioissa, Michael-additioissa, Mannich-reaktioissa, Diels–Alder-reaktioissa, vedytyksissä ja epoksidoinneissa. Organokatalyyttien etuna metalliatomeja sisältäviin katalyytteihin on alhaisempi myrkyllisyys, helppo kierrätettävyys, usein alhaisempi hinta ja vedensietokyky.[1][3][2][4] Organokatalyyttien katalyyttinen aktiivisuus on kuitenkin usein alhaisempi kuin siirtymämetallikatalyyteillä, minkä vuoksi reaktioissa tulee saman konversion saavuttamiseksi käyttää suurempaa katalyyttimäärää tai pidempiä reaktioaikoja[3].

Kovalenttinen nukleofiilinen ja happo-emäskatalyysi organokatalyyteillä

Tyypillisimmin organokatalyytteinä käytetään nukleofiilisia kiraalisia amiineja. Amiinit toimivat reaktioissa elektronipareja luovuttavina Lewis-emäksinä. Esimerkiksi aldolireaktioissa amiinit muodostavat karbonyyliyhdisteistä helpommin reagiovia enamiineja.[1][3] [4] Aldolireaktioissa organokatalyyteillä on saavutettu hyvin korkeita saantoja ja jopa 99%:n enantioylimäärä.[3]

Molekyylin sisäinen aldoliadditio, jossa organokatalyyttinä on proliini.

Lewis-happamuuden tai -emäksisyyden lisäksi organokatalyytit voivat toimia myös tavanomaisina happoemäskatalyytteinä eli toimia protonin luovuttajina tai vastaanottajina. Eräissä molekyyleissä on sekä hapan että emäksinen ryhmä. Esimerkkinä tästä ovat aminohapot ja kiina-alkaloidit. Erilaisia funktionaalisia ryhmiä sisältävät orgaaniset yhdisteet toimivat myös tehokkaina faasinsiirtokatalyytteinä.[1][3]

Katalyysi vetysitoutumisen kautta

Nukleofiilisessa katalyysissä organokatalyytit nopeuttavat reaktiota kovalenttisen sitoutumisen kautta muodostaen reaktiivisempia välivaiheita. Eräät organokatalyytit, erityisesti tioureajohdannaiset, katalysoivat reaktioita myös ilman kovalenttista sitoutumista vetysidoksien muodostumisen avulla.[1][3] Näillä katalyyteillä on saatu lupaavia tuloksia muun muassa Claisen-toisiintumisissa ja typen ja hiilen väliseen kaksoissidokseen tapahtuvissa additioreaktioissa.[3]

Lähteet

  1. Petri Pihko, Anniina Erkkilä & Antti Pohjakallio: Organokatalyysi on tuhansien mahdollisuuksien työkalu. Kemia, 2005, 32. vsk, nro 1, s. 36–38.
  2. W. L. F. Armarego,Christina Chai: Purification of Laboratory Chemicals, s. 139. Butterworth-Heinemann, 2012. ISBN 978-0123821614. Kirja Googlen teoshaussa (viitattu 21.10.2013). (englanniksi)
  3. Hans-Ulrich Blaser, Andreas Pfaltz & Helma Wennemers: Chiral Compounds, Ullmann's Encyclopedia of Industrial Chemistry, John Wiley & Sons, New York, 2012. Viitattu 15.5.2014
  4. Jonathan Clayden, Nick Greeves, Stuart Warren: Organic Chemistry, s. 1127–1128. Oxford University Press, 2012. ISBN 978-0-19-927029-3. (englanniksi)

    Aiheesta muualla

    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.