Laajennettu reaalilukujoukko
Laajennettu reaalilukujoukko on lukujoukko, joka saadaan lisäämällä reaalilukujoukkoon kaksi uutta elementtiä: positiivinen äärettömyys +∞ eli ∞ ja negatiivinen äärettömyys −∞. [1] [2] Laajennettua reaalilukujoukkoa voidaan merkitä symbolilla tai välinä [−∞, +∞]. Laajennetun reaalilukujoukon geometrinen vastine on laajennettu lukusuora, jossa ajatellaan tavallisen lukusuoran kumpaankin päähän lisätyksi yksi äärettömän kaukainen piste.
Laajennettu reaalilukujoukko on tarpeellinen erityisesti raja-arvotarkasteluissa ja mittateorian sovelluksissa.
Laskutoimitukset
Tavalliset reaalilukujen laskutoimitukset voidaan osittain ottaa käyttöön myös laajennetussa reaalilukujoukossa.
Näissä määrittelyissä a + ∞ on sekä a + (+∞) että a − (−∞), ja vastaavasti a − ∞ on sekä a − (+∞) että a + (−∞).
Sen sijaan ∞−∞, ±∞ ÷ ±∞, (±∞)0, 0±∞, 1±∞ ja (−∞)±∞ ei tavallisesti ole määritelty. Raja-arvolaskennassa määrittämätön 0 * ±∞ taas määritetään todennäköisyyslaskennassa ja mittateoriassa tavallisesti nollaksi.
Lähteet
- Metsänkylä, Tauno & Näätänen, Marjatta: Algebra s. 143 matematiikkalehtisolmu.fi. 2010. Viitattu 8.7.2019.
- Suominen, Kalevi & Vala, Klaus: Topologia, s. 86. Gaudeamus, 1965. ISBN 951-662-050-7.
Kirjallisuutta
- Rikkonen, Harri: Matematiikan pitkä peruskurssi II: Reaalimuuttujan funktioiden differentiaalilasku. Helsinki: Otakustantamo, 1969. ISBN 951-671-022-0.
- Pitkäranta, Juhani: Calculus Fennicus – TKK:n 1. lukuvuoden laaja matematiikka (2000–2013) (pdf) Helsinki: Avoimet oppimateriaalit ry. ISBN 978-952-7010-12-9 ISBN 978-952-7010-6 (pdf).