Koersiivisuus

Koersiivisuus (koersiviteetti eli koersitiivivoima[1]; tunnus HC) on suure, joka mittaa ferromagneettisen aineen kykyä säilyttää magneettisuutensa sen jälkeen, kun se ulkoinen magneettikenttä on poistettu. Sille analoginen suure on sähköinen koersiivisuus, joka on ferrosähköisen aineen kyky pysyä poolisena sen jälkeen, kun ulkoinen sähkökenttä on poistettu.

Koersiivisuus HC magnetisaatiokäyrässä
Erityyppisten teräslaatujen hystereesikäyriä. BR on materiaalin remanenssi (jäännösmagnetismi) ja HC sen koersiivisuus. Mitä suurempi alue käyrän sisään jää, sitä suurempi on koersiivisuus. Aineen magnetoituminen riippuu ulkoisesta magneettikentästä ja sen muuttumisesta tavalla, joka vastaa käyrän kiertämistä vastapäivään.
Koersiivisuus on suoraan verrannollinen hystereesisilmukan vaakasuoran poikkileikkauksen pituuteen

Ferromagneettisen aineen koersiivisuus on sen vastakkaissuuntaisen magneettikentän voimakkuus, joka tarvitaan pienentämään aineen magnetoituma nollaan sen jälkeen, kun kappaleen magnetoituminen on saavuttanut kyllästysarvonsa.[2] Toisin sanoen koersiivisuus mittaa sitä, kuinka voimakkaasti ferromagneettinen aine vastustaa demagnetoitumista. Koersiivisuuden SI-yksikkö on ampeeri metriä kohti (1 A/m), siis sama kuin magneettikentän voimakkuuden, mutta sen ohella käytetään edelleen myös cgs-järjestelmän mukaista yksikköä oersted. Yksi oersted on 1000/(4π) A/m eli noin 79,577 A/m. Aineen koersiivisuus voidaan mitata B-H-analysaattorilla tai magnetometrilla.

Ferromagneettisia aineita, joilla on suuri koersiivisuus, sanotaan magneettisesti koviksi, ja niistä voidaan valmistaa kestomagneetteja. Aineita, joilla on alhainen koersiivisuus, sanotaan magneettisesti pehmeiksi. Niistä voidaan tehdä sähkömagneetteja, joita käytetään esimerkiksi muuntajissa, sähkömoottoreissa ja kaiuttimissa.

Kokeellinen määritys

Joidenkin magneettisten aineiden koersiivisuuksia:
AineKoersiivisuus
OekA/m
Supermalloy
(16 % Fe, 79 % Ni, 5 % Mo)
0,002[2][3]0,00016
Permalloy
(20 % Fe, 80 % Ni)
0,05[3]0,0040
puhdas rauta0,05[2]0,0040
piirauta (4,25 % Si)0,4[2]0,032
kankirauta (1896)2[4]0,159
puhdas nikkeli (99 %)0,7[3]0,056
puhdas koboltti (99 %)10[3]5,57
Alnico
8 % Al, 4 % Ni, 24 % Co, 3 % Cu, 61 % Fe
550[2]43,77
Cr-Co-Pt-seos1700[5]135
Neodyymimagneetti
Nd2Fe14B[6]
12000[7]955
Samarium-kobolttimagneetti
2 samarium: 17 rauta: 3 typpi (10 K
< 500–35,000 [8]40–2,785
Samarium-kobolttimagneetti40 000[9]

Tyypillisesti magneettisen materiaalin koersiivisuus määritetään mittaamalla magnetometrilla sen magneettinen hystereesisilmukka, jota sanotaan myös magnetisaatiokäyräksi. Kentän arvo, jonka kohdalla saatu käyrä leikkaa x-akselin, kon koersiivisuus. Jos näytteessä on mukana antiferromagneetti, voimistuvassa ja heikkenevässä kentässä mitatut koersiivisuudet saattavat poiketa toisistaan exchange bias -ilmiön vuoksi.

Materiaalin koersiivisuus riippuu sen aikavälin pituudesta, jonka kuluessa magnetisaatiokäyrä mitataan. Jos kappale asetetaan vastakkaissuuntaiseen magneettikenttään, joka on sen koersiivisuutta pienempi, sen magnetoituma pienenee aikaa myöten nollaan. Yleensä materiaalin koersiivisuus kasvaa magneettikentässä, joka vaihtaa suuntaansa suurella taajuudella. Tämä seikka rajoittaa tiedonsiirtonopeutta käytettäessä magneettisia tallennusvälineitä.

Merkitys

Kuten kaikissa prosesseissa, joihin liittyy hystereesi, magnetisaatiokäyrän sisään jäävän alueen pinta-ala kuvaa työtä, jonka ulkoinen kenttä tekee muuttaessaan materiaalin magnetoitumista, ja siihen kuluva energia muuttuu lämmöksi. Esimerkiksi magnetostriktiossa syntyy tällä tavoin lämpöhäviöitä. Kun koersiivisuus on magneettisen hystereesin mitta, se kuvaa myös sitä, minkä verran magneettisesti pehmeissä materiaaleissa niiden tavallisimmissa sovelluksissa esiintyy lämpöhäviöitä.

Materiaalin magneettisen kovuuden mittana voidaan käyttää joko koersiivisuutta tai hystereesikäyrän neliömäisyyttä eli jäännösmagnetismin ja kyllästysmagnetoituman suhdetta, joskin tavallismin mittana käytetään energiatuloa eli kyllästysmagnetoituman ja koersiivisuuden tuloa. 1980-luvulla tulivat käyttöön harvinaisia maametalleja sisältävät magneetit, joilla on suuri energiatulo mutta joiden heikkona puolena on niiden alhainen Curie-piste eli lämpötila, jonka yläpuolella ne menettävät ferromagneettisuutensa.

Lähteet

  • Voipio, Erkki: Sähkö- ja magneettikentät, s. 130–133. Moniste 381. Espoo: Otakustantamo, 1987. ISBN 951-672-038-2.

Viitteet

  1. Leena Lahti: ”Ferromagnetismi”, Sähköoppi, s. 128. Gaudeamus, 1977. ISBN 951-662-044-0.
  2. Iron (iv): Iron and Magnetism mysite.du.edu. Viitattu 21.2.2017.
  3. Magnetic Properties of Ferromagnetic Materials Hyperphysics.phy-atr.gsu.edu. Viitattu 21.2.2017.
  4. Dynamo electric machinery Books.google.com.
  5. M.M. Yang, S.E. Lambert, J.K. Howard, C. Hwang: Laminated CoPtCr/Cr films for low noise longitudinal recording. IEEE Transactions on Magnetics, 1991, 27. vsk, nro 6, s. 5052–5054. doi:10.1109/20.278737.
  6. Wonder Magnets: What are Neodymium magnets made of? Wondermagnet.com. Arkistoitu 11.2.2015. Viitattu 21.2.2017.
  7. How are magnetic fields measured wondermagnet.com. Arkistoitu 11.2.2015. Viitattu 21.2.2017.
  8. H. Nakamura, K. Kurihara, T. Tatsuki, S. Sugimoti, M. Okada, M. Homma: Phase Changes and Magnetic Properties of Sm2Fe17Nx. IEEE Translation Journal on Magnetics in Japan, 1992, 7. vsk, nro 10, s. 798–804. doi:10.1109/TJMJ.1992.4565502. Artikkelin verkkoversio.
  9. M. F. de Campos, F. J. G. Landgraf, N. H. Saito, A. Romero, A. C. Neiva, F. P. Missell, E. de Morais, S. Gama, E. V. Obrucheva, B. J. Jalnin: Chemical composition and coercivity of SmCo5 magnets. Journal of Applied Physics, 1998, nro 84. doi:10.1063/1.368075. Artikkelin verkkoversio.

    Katso myös

    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.