Kertoma

Positiivisen kokonaisluvun kertoma on luvun ja kaikkien sitä pienempien positiivisten kokonaislukujen tulo, ja se merkitään . Esimerkiksi

01
11
22
36
424
5120
6720
75040
840 320
9362 880
103 628 800
151 307 674 368 000
202 432 902 008 176 640 000
2515 511 210 043 330 985 984 000 000
503,04140932... × 1064
701,19785717... × 10100
4501,73368733... × 101000
32496,41233768... × 1010 000
252061,205703438... × 10100 000

Kertoma kuvaa äärellisen joukon alkioiden permutaatioiden lukumäärää: esimerkiksi 4 ihmistä voivat olla jonossa 24 eri tavalla.

Kertoma voidaan yleistää luonnollisilta luvuilta kompleksilukuihin saakka, tavallisin yleistys on gammafunktio.

Merkinnän esitti ranskalainen matemaatikko Christian Kramp vuonna 1808.[1]

Kertomaa käytetään yleensä pitkien kertolaskujen esittämiseen. Esimerkiksi

voidaan esittää muodossa

Määritelmä

Luvun kertoma määritellään seuraavasti: [2]

kaikilla luonnollisilla luvuilla .

Esimerkiksi

.

On lisäksi määritelty, että , koska tyhjä tulo on . Luvun kertomaa ei ole määritelty negatiivisille luvuille tai desimaaliluvuille, ainoastaan luonnollisille luvuille.


Stirlingin approksimaatio

Stirlingin approksimaatiolla voidaan arvioida kokonaisluvun kertomaa. Tämän likimääräismenetelmän tarkkuus suurenee kun käsitellään suuria kokonaislukuja. Arvioinnin menetelmää pidetään yleisesti skottilaisen matematiikon James Stirlingin kehittämänä,[3] joskin samoihin aikoihin myös ranskalainen matematiikko Abraham de Moivre oli tutkinut aihetta.[4]

Tilastollisessa termodynamiikassa tarkastellaan hiukkasjoukkoa, jonka suuruus vastaa Avogadron vakiota. Entropiaa laskettaessa tarvitaan näin suuresta hiukkasjoukosta ottaa kertoma, jonka laskeminen ilman likimääräismenetelmää on työlästä.

Stirlingin approksimaation aiheuttama suhteellinen virhe on alle 1 % jo 100:n hiukkasen järjestelmässä, joten approksimaatio on tarkka Avogadron vakion suuruiselle hiukkasjoukolle.

Stirlingin approksimaation johtamiseksi tarkastellaan kertoman logaritmia kun otetaan suurena lukuna:

Euler-MacLaurin -yhtälöä käyttäen saadaan tarkempi approksimaatio:[5]

Tästä yhtälöstä kaksi ensimmäistä termiä ovat täysin riittäviä kertoman luonnollisen logaritmin approksimaation laskemiseksi käsiteltäessä hyvin suurta hiukkasjoukkoa. Oheisessa kuvassa on esitetty havainnollisuuden vuoksi yhtälön kahden ensimmäisen termin ja toisaalta kolmen ensimmäisen termin laskentatarkkuudella suhteellisen virheen pieneneminen tarkasteltavana olevan hiukkaslukumäärän kasvaessa.

Kertoman logaritmiton Stirlingin approksimaatio on . Tämän lisäksi kaikilla luonnollisilla luvuilla on voimassa arvio:[6]

Esimerkkejä approksimaation käytöstä:

Lukuteoria

Kertomilla on monia sovellutuksia lukuteoriassa. Erityisesti on jaollinen kaikilla lukua pienemmillä ja yhtäsuurilla alkuluvuilla. Siitä seuraa, että on yhdistetty luku, jos

.

Vahvempi tulos on Wilsonin lause, jonka mukaan

,

jos on alkuluku. Ainoa kertoma, joka on myös alkuluku, on 2. On kuitenkin olemassa monia alkulukuja muotoa . Näitä alkulukuja kutsutaan kertoma-alkuluvuiksi.

Kertomafunktion arvo gammafunktion avulla

Kertomafunktio voidaan ilmaista kokonaislukuargumenttisen gammafunktion avulla:

.

Gammafunktion avulla kertoma voidaan määritellä myös muille kuin luonnollisille luvuille, mutta tällöin kertoman sijasta yleensä viitataan suoraan gammafunktioon.

Kertomafunktion arvo alkulukutekijöiden tulona

Kertomafunktion arvo voidaan laskea kaavasta

,

missä luvut ovat alkulukuja.

Katso myös

Lähteet

  1. Florian Cajori: ”448”, A History of mathematical Notations, Volume II, s. 72. . ISBN 978-1-60206-713-4.
  2. Richard Courant & Fritz John: Introduction to Calculus and Analysis 1 - Volume 1, s. 56. Springer, 1999. ISBN 3-540-65058-X. (englanniksi)
  3. J. Stirling, Methodus Differentialis: sive Tractatus de Summatione et Interpolatione Serierum Infinitarum, 1730, Lontoo
  4. A. de Moivre, Miscellanea analytica de seriebus et qadraturis, 1730, Lontoo
  5. E. Steiner, The Chemistry Math Book, 2004, s. 460, ISBN 0 19 855914 3
  6. https://proofwiki.org/wiki/Limit_of_Error_in_Stirling%27s_Formula

    Aiheesta muualla

    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.