Diskriminantti
Polynomin p(x)=anxn+...+a1x+a0, missä kertoimet a1,a2,...,an kuuluvat annettuun kuntaan K, diskriminantti on (2n − 1)×(2n − 1) matriisin
Toisen asteen yhtälö
Tunnetuin erikoistapaus diskriminantista on toisen asteen polynomin p(x) = ax2+bx+c diskriminantti D = b²−4ac. Toisen asteen polynomin tapauksessa voidaan diskriminantin arvosta päätellä reaalikertoimisen yhtälön p(x) = 0 reaalisten ratkaisujen eli reaalijuurien lukumäärä[1]:
- Jos , niin yhtälöllä on kaksi erisuurta reaaliratkaisua.
- Jos , niin yhtälöllä ei ole yhtään reaaliratkaisua.
- Jos , niin yhtälöllä on yksi reaaliratkaisu, ns. kaksoisjuuri.
Diskriminantin avulla ei saada selville yhtälön juuria vaan reaalisten juurien lukumäärä. Diskriminantti on nopeampi tapa laskea yhtälön reaalijuurien määrä kuin yhtälön ratkaiseminen toisen asteen yhtälön ratkaisukaavalla.
Lähteet
- Thompson, Jan (toim.): Matematiikan käsikirja, s. 72. Kustannusosakeyhtiö Tammi ja Suomen Teknologiatieto Oy, 1991.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.