Zatiki laburtezin

Zatiki laburtezinak, zenbakitzaile eta izendatzaile osoak dituzten zatikiak dira, zeinen arteko zatitzaile komun bakarra 1 den (edo -1, zenbaki negatiboak kontuan hartzen baditugu).[1] Beste era batera esanda, ab zatikia laburtezina da baldin eta soilik baldin a eta b elkarren artean lehenak baldin badira. Bada definizio baliokide bat: a eta b zenbaki osoak baldin badira, ab zatikia laburtezina da baldin eta soilik baldin ez bada existitzen cd zatikia non |c| < |a| edo |d| < |b|, |a| a-ren balio absolutua den.[2] Bi zatiki ab eta cd berdinak edo baliokideak dira baldin eta soilik baldin ad = bc.

Hurrengo hauek zatiki laburtezinak dira: 14 , 57 , -2021. Baina, 24 zatikia, aldiz, ez da laburtezina, 12 eran idatz baitaiteke, eta 12 -ren izendatzailea txikiagoa baita.

Laburtezina ez den zatikia, zatiki laburgarria da.

Adibideak

12090 zatikia zatiki laburtezin eran idazteko prozesua ondokoa da:

12090 = 129 = 43.

Lehenengo urratsean, izendatzailea eta zenbakitzailea 10ez zatitu dira, zeina 120 eta 90 zenbakien arteko zatitzaile komuna den. Bigarren pausoan berriz, 3rekin zatitu dira. Azken emaitza, 4/3, laburtezina da, 4 eta 3ren arteko zatitzaile komun bakarra 1 baita.

Azken emaitza, 43, pauso bakar batean lor daiteke, izendatzailea eta zenbakitzailea zatitzaile komun handienarekin zatituz (zkh(120,90)=30).

Bakartasuna

Zenbaki arrazional orok adierazpen bakarra dauka zatiki laburtezin modura, izendatzaile positiboa duena (2/3 = -2/-3 biak laburtezinak dira). Zatiki laburtezinen bakartasuna zenbaki oso lehenen faktorizazioaren bakartasunetik ondorioztatzen da. Izan ere, ab = cd berdintzak ad = bc inplikatzen du eta, ondorioz, berdintzaren bi aldeek faktorizazio lehen berdina izan behar dute. a-k eta b-k faktore lehen komunik ez daukatenez, a-ren zenbaki lehenen faktorizazioa c-renaren azpimultzo bat da, eta alderantziz. Ondorioz, a = c eta b = d.

Erreferentziak

  1. Encyclopaedia of mathematics : an updated and annotated translation of the Soviet "Mathematical encyclopaedia". Reidel ©1988-©1994 ISBN 9781556080104. PMC 16755499..
  2. (Ingelesez) Scott, William. (1850). Elements of Arithmetic and Algebra: For the Use of the Royal Military College. Longman, Brown, Green, and Longmans (Noiz kontsultatua: 2018-03-22).

Bibliografia

  1. 1941-, Grillet, Pierre A. (Pierre Antoine), (2007), Abstract algebra (2nd ed. argitaraldia), Springer, ISBN 9780387715681, PMC 187082642
  2. D., Sally, Judith, Integers, fractions, and arithmetic : a guide for teachers, ISBN 9780821887981, PMC 816498955
  3. B.,, Garrett, Paul, Abstract algebra, ISBN 9781584886907, PMC 903954972
  4. Albert., Cuoco, (2013), Learning modern algebra : from early attempts to prove Fermat's last theorem, Mathematical Association of America, ISBN 9781939512017, PMC 857078215

Kanpo estekak

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.