Ohmen legea

Ohmen legearen arabera, bi puntu lotzen dituen eroale batetik doan korrontea, zuzenki proportzionala da bi puntuen arteko tentsioari eta alderantziz proportzionala eroaleak daukan erresistentziari. Baieztapen honetatik hurrengo ekuazioa lortzen da:

Ohmen legea
Ohmen legearen triangelua

Non eroaletik zirkulatzen duen korrontea den, Amperetan (A) neurturik. berriz, bi puntuen arteko tentsioa da eta Voltetan (V) neurtzen da. azkenik, eroaleak duen erresistentzia elektrikoa da eta Ohmetan (Ω) neurtzen da. Ohmen legeak dio, ekuazio honetan R konstante bat dela. Izan ere, ez dauka inolako menpekotasunik intentsitatea edo tentsioarekiko, eroalearen ezaugarri fisiko bat baita.

Ohmen legeak, ia material eroale elektriko ororen portaera zehaztasun handiarekin deskribatzea lortzen du. Hala ere, badaude zenbait material eroale Ohmen legea jarraitzen ez dutenak. Horiei material eroale ez ohmikoak deritze. Legeak izena George Ohm fisikari alemaniarrari zor zaio, 1827. urtean, zirkuitu elektriko sinpleetan gertatzen ziren korronte eta tentsioak deskribatu baitzituen. Horretarako, gaur egun ezagutzen dugun formula baino formula konplexuago bat erabili zuen. Fisikan, Ohmen legearen kontzeptua arlo elektrikoa ez den beste hainbat esparrutan erabili izan da. Legearen forma bektoriala esaterako, elektromagnetismoan eta zientzia materialean erabiltzen da.

Non materialean zehar darion korronte dentsitatea, ingurunearen eremu elektrikoa den eta (sigma) materialaren araberakoa den parametroa den, konduktibitatea deiturikoa. Ohm-en legearen birformulazio hau, Gustav Kirchhoffek egina da.

Historia

Ohmek bere erresistentziari buruzko lana 1825. eta 1826. urteen artean burutu zuen eta 1827. urtean argitaratu zuen “Die galvanische Kette, Mathischisch Bearbeitet” (Matematikoki aztertutako zirkuitu galvanikoa) izeneko liburuan. Ohm beroaren kondukzioari buruzko Fourier-en lanean oinarritu zen bere lanaren azalpen teorikoa gauzatzeko. Arlo esperimentalean, berriz, hasieran pila voltaikoak erabiltzen zituen. Hala ere, gero termopare bat erabiltzen zuen, tentsio iturri egonkorrago bat eskaintzen zuelako. Korronteak neurtzeko, galvanometro bat erabiltzen zuen eta termoparearen terminalen arteko tentsioa ezagutzeko, horien loturaren tenperaturarekiko proportzionala zela zekien. Ondoren, luzera, diametro eta material ezberdineko kableak gehitu zituen zirkuitua osatzeko. Hainbat saiakuntzaren ondoren, bere datuak ekuazio baten bitartez modelatu zituen.

Non x galvanometroaren irakurketa, l saiakuntzako eroalearen luzera, a termoparearen loturaren tenperatura eta b konstante bat diren. Formula honen bitartez, Ohm-ek bere legea zehaztu zuen eta bere emaitzak argitaratu zituen. Hala ere, gaur egun formula hori modu honetan idatziko genuke:

Non ε termoparearen tentsio ezberdintasuna, r termoparearen barne erresistentzia eta R saiakuntzako eroalearen erresistentzia den. Kablearen (eroalearen) luzerarekiko idazten bada, honela geratuko litzateke:

Kasu honetan, R eroalearen erresistentzia luzera unitateko den. Beraz, Ohm-en koefizienteak honakoak izango dira:

Ohm-en legea da seguruenik elektrizitatearen fisikaren deskribapen kuantitatiboaren lege garrantzitsuena. Nahiz eta gaur egun ia nabaritzat jo, liburua argitaratzerakoan, garaiko kritikoek areriotasunez erreakzionatu zuten Ohm-ek gaiari egindako tratamenduari. Hain txarto ikusia izan zen non irakaskuntza-ministro alemaniarrak esan zuen halako heresiak predikatzen zituen irakaslea ez zela duina zientzia irakasteko. Kritika horiek eragin zuten 1840. urtera arte Ohm-en lana guztiz onartua ez izatea. Hala ere, Ohm-ek zientziari emandako ekarpenengatik nolabaiteko onarpena izan zuen hil baino askoz arinago.

1850eko hamarkadan, Ohm-en legea oso onartua zegoen eta beraz, beste aukera batzuk ezeztatu ziren. Barlow-en legea esaterako. 1897. urtean, J.J. Thomson-ek elektroia aurkitu zuen eta berehala konturatu zen hori zela korronte elektrikoa garraiatzen zuen partikula. 1900. urtean, eroapen elektrikoaren lehenengo modeloa proposatu zen, Paul Drude-ren modeloa. Horrekin, Ohm-en legeari azalpen zientifiko bat eman zitzaion.

1920-ko hamarkadan, praktikan erresistentzia batean zehar doan korronte batek fluktuazio estatistiko batzuk dituela aurkitu zen, nahiz eta tentsio eta erresistentzia konstanteak izan. Fluktuazio horiek tenperaturaren araberakoak dira eta gaur egun Johnson-Nyquist-en zarata moduan ezagutzen dira. Hala ere, Ohm-en legeak onargarria izaten jarraitzen du batezbesteko korrontea kalkulatzeko material erresistibo puruetan.

Irismena

Ohm-en legea lege enpiriko bat da, hau da, esperimentu askoren generalizazio bat. Honek, korrontea eremu elektrikoari ia proportzionala dela frogatu du ia material gehienetan. Hala ere, ez da Maxwell-en ekuazioak bezain fundamentala eta ez da beti betetzen. Izan ere, edozein material, eremu elektriko nahiko fuerte baten menpean jarriz gero, deskonposatu egingo da. Gainera, badaude ingeniaritza elektrikorako oso interesgarriak diren zenbait material ez ohmiko, eremu elektriko ahuletan ere deskonposatuko direnak.

Denboran zehar, Ohm-en legea hainbat eskala desberdinetan frogatua izan da. Izan ere, XX. mendearen hasieran, uste zen Ohm-en legeak huts egingo zuela maila atomikoan, baina zenbait esperimentuk kontrakoa frogatu zuten. 2012. urtean, ikertzaileek frogatu zuten Ohm-en legea egokia dela lau atomoko zabalera eta atomo bateko altuera duen siliziozko kableetan.

Zirkuituen analisia

Ohmen legea gogoratzeko.

Zirkuitu elektrikoen analisian, truka daitezkeen Ohmen legearen hiru adierazpen baliokide erabiltzen dira:

Ekuazioen trukagarritasuna triangelu batekin irudika daiteke, non (tentsioa) goian jartzen den, intentsitate elektrikoa ezkerrean, eta erresistentzia elektrikoa eskuinean. Ezker eta eskuineko atalak banatzen dituen lerro bertikalak biderketa adierazten du, eta goiko eta beheko aldeak banatzen dituen lerro horizontalak zatiketa adierazten du.

Zirkuitu erresistiboak

Tentsio-iturri batekin eta erresistentzia batekin osatutako zirkuitu elektriko sinple bat. Ohmen legearen arabera,

Ohmen legea elementu erresistiboak bakarrik dituen zirkuituetan erabiltzen da —kapazitantzia edo induktantziarik gabeko zirkuituetan—. Korronte zuzeneko zirkuituetan erabil daiteke; korronte alternoko zirkuituetan ere erabil daiteke, baina kapazitantziarik eta induktantziarik ez dagoen kasuan soilik.

Seriean edo paraleloan konektatuta dauden erresistentziak erresistentzia baliokide bakar batez ordezka daitezke zirkuitu elektrikoen analisia egitean

intentsitatea amperetan (A),
potentzial elektrikoaren diferentzia voltetan (V) eta
erresistentzia elektrikoa ohmetan (Ω).
Buruz ikasteko; virus ikasteko...

Formula aplikatuko dugun testuinguruaren arabera aukeratuko da. Gailu elektriko baten  I-V kurbaren ezaugarriak adierazi nahi badira,  erabiliko da adibidez. erresistentzian zehar  korrontea badabil, eta erresistentzia horren borneen arteko tentsioa kalkulatu nahi bada,   erabiliko da. Era berean, posible izango da haren borneen artean tentsioa duen  eta haren baitan  korrontea zirkulatzen duen erresistentzia kalkulatzea, .

Dena den, modu sinpleago bat existitzen da Ohmen legean parte hartzen duten magnitudeen arteko erlazioak gogoratzeko. Ohmen legearen triangelua izenaz ezagutzen da. Magnitude baten balioa ezagutzeko, triangeluan magnitude horri dagokion hizkia estaltzen da eta gainontzeko bi hizkiek erlazioa adierazten dute. Horretarako, kontuan izan behar da ondoan dauden hizkiak biderkatu egiten direla eta bata bestearen gainean dagoenean zatitu egiten direla.

Zirkuitu erreaktiboak

Korronte alternoko zirkuituetan edo tentsio aldakorreko zirkuituetan kondentsadoreak edo/eta harilak badaude, horien erreaktantzia ere hartu behar da kontuan. Kasu horretan, tentsioa eta korrontea elkarrekin erlazionatzeko, inpedantzia erabili behar da:

intentsitatea irudikatzen duen fasorea,
potentzial elektrikoaren diferentzia irudikatzen duen fasorea eta
inpedantzia elektrikoa.

inpedantzia zenbaki konplexua izan daiteke. erresistentzia inpedantziaren parte erreala da, eta , erreaktantzia inpedantziaren parte irudikaria.

Bestalde, da, alegia zenbaki irudikaria, zeina ingeniaritzako testuetan jota letrarekin adierazi ohi den.

konplexua denean —erreaktantzia dagoenean—, parte errealak bakarrik xahutzen du beroa. Z inpedantzian alde irudikaririk ez badago, hau da, erreaktantziarik ez dagoenean, lehen aipatutako zirkuitua soilik erresistiboa izango da.

Beraz, behin inpedantziak izanda, Ohm-en legea modu honetan aplika dezakegu:

Non V eta I tentsioaren eta korrontearen balio eskalarrak diren hurrenez hurren. Formularen aldaera honek, hasierakoa baino jeneralagoa da eta kasu gehiago aztertzea ahalbidetzen digu.

Korronte alternoa (CA) dugun zirkuitu baten, Z aldagaia maiztasunaren aldagaiarekiko (s) asko aldatzen da, eta beraz, baita tentsioa eta korrontea ere. Korronte alterno sinusoidal bat dagoenean, s parametroa, sinusoidalaren moduan idatz daiteke.

Ikus, gainera

Kanpo estekak


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.