Brahmagupta

Brahmagupta (jaio c.598, hil c.668), indiar matematikari eta astronomoa izan zen. Astronomiari buruzko Brāhmasphuṭasiddhānta izeneko lanean matematika eta aljebrari buruzko hainbat atal idatzi zuen. Zenbaki negatiboak erabili zituen lehena izan zen eta oinarrizko lau eragiketa matematikoak enuntziatu zituen.

Brahmagupta

Bizitza
Jaiotzako izen-deiturakब्रह्मगुप्तः
JaiotzaBhinmal (en) Itzuli eta Ujjain, c. 598
BizilekuaBhinmal (en) Itzuli
Ujjain
HeriotzaUjjain eta Bhinmal (en) Itzuli, c. 668 (71/72 urte)
Familia
AitaJishnugupta
Jarduerak
Jarduerakmatematikaria eta astronomoa
Lan nabarmenak

Bizitza

Brahmagupta, berak adierazi zuenez, K. o. 598. urtean jaio zen. Brahmagupta Indiako ipar-sartaldeko Bhillamalan bizi izan zen Harsharen jaurgoan. Horregatik, askotan, Bhillamalacarya (euskaraz: «Bhillamalako irakaslea») deitzen zaio. Gero Malwako Ujjaingo behatoki astronomikoko burua izan zen. Bertan matematikari eta astronomiari buruzko liburua idatzi zuen, Brāhmasphuṭasiddhānta («Egokiro Sortutako Brahmaren Jakinbidea») 628an, eta Khandakhadyaka («jateko hozka» edo «janari-mordoa») lan praktikoa 665ean. Bi liburu horien artean, Brāhmasphuṭasiddhānta da, zalantzarik gabe, garrantzitsuena.

Brahmaguptaren formula

Brahmaguptaren teoremaren diagrama.

Bere lanean, hirukote pitagorikoa eratzeko araua dago:

hori Babiloniako antzinako arauaren aldaketa izan arren, berak ezin hobeto ezagutu ahal izan zuena. Laukientzako eremuaren Brahmaguptaren formula, formulekin batera erabili zuen:

y

diagonaletarako, zenbaki arruntak diren alde, diagonal eta eremuak dauzkaten laukiak aurkitzeko.

Ekuazio zehaztugabeen teoria

Brahmaguptak, jakina, matematika berez atsegin zuen, ezen praktikatik kanpoko gauzak ezartzen baitzituen, hala nola haren laukiei buruzko emaitzak. Antza denez, bera ekuazio diofantiko linealari irtenbide orokorra ematen lehena izan zen:

con .

Ekuazio horrek emaitzak eduki ditzan, eta -ren zatitzaile komun handienaz zatitu behar da, eta Brahmaguptak bazekien, eta elkarrekiko zenbaki lehenak baldin badira, orduan, ekuazioaren emaitza guztiak honako formula hauek ematen dituztela:

,

Bertan zenbaki oso arbitrarioa da.

donde es un entero arbitrario.[1][2]

Erreferentziak

  1. Historia de la matemática, Carl B. Boyer. Alianza Editorial.
  2. Museo de la Informática y Computación Aplicada-tik hartutako edukia.

Kanpo estekak

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.