Bigarren mailako ekuazio
Matematikan, aldagai bakarreko bigarren mailako ekuazioa edo ekuazio koadratikoa [2], era osoan, honela adierazten den aldagai bakarreko ekuazio polinomiko bat da[3]:



Ekuazioa ebaztean, ezezaguna den x aldagaiaren balioa zehaztea da helburua, hau da, ekuazioaren erroak edo soluzioak ateratzea, a, b eta c zenbakizko konstanteak izanik. Konstante hauei koefiziente deritze. Definizioz, bigarren mailako ekuazioan a ≠ 0 bete behar da, bestela lehenengo mailako ekuazio bat izango bailitzateke. a=1 betetzen denean, x2+bx+c=0 ekuazioetan alegia, ekuazio koadratikoa monikoa dela esaten da [4].
Bigarren mailako ekuazio osatugabeak ere badaude [5], baina agertzen ez diren koefizienteak 0 bihurtuz aise aldatzen dira adierazpen orokorrera:
Bigarren mailako ekuazioek aplikazio zabalak dituzte zientzian, hala-nola fisikan, azeleraziozko mugimenduen aztertzeko [3].
Ebazpena
Bigarren mailako ekuazio osoaren ebazpen edo soluzioa formula honek ematen du:
- ,
"±" ikurraren bitartez bi balio hauek soluzio direla adierazten da:
eta
betetzen denean, aurreko bi soluzioak berdinak dira: .
Geometria

f (x) = x2 − x − 2 = (x + 1)(x − 2) funtzio koadratikoan, funtzioak x abzisa-ardatza ebakitzen dueneko puntuak, x = −1 and x = 2 alegia, x2 − x − 2 = 0 bigarren mailako ekuazioaren soluzioak dira.
Bigarren mailako ekuazioaren soluzioak a, b eta c zenbaki errealak badira funtzio koadratikoaren zeroak dira, aipaturiko funtzioak 0 balioa hartzen dueneko x puntuak alegia:
Diskriminatzailea
Diskriminatzailea honako adierazpen honen balioa da (delta izeneko letra maiuskula grekoaz adierazten da):
Bigarren mailako ekuazio batek, koefizienteak zenbaki errealak izanik, soluzio erreal bat edo bi izan dezake ala bi erroak irudikari edo konplexuak dira. Erro edo soluzioen kopurua eta izaera diskriminatzaileak hartzen duen balioa aztertuz jakiten da [6] :
- Diskriminatzailea positiboa bada, bi soluzioak zenbaki erreal dira. Diskriminatzailea zenbaki karratu edo karratu perfektua bada, bi soluzioak zenbaki arrazionalak direla egiaztatzen da.
- Diskriminatzailea 0 bada, soluzioa bakarra da eta gainera zenbaki erreala: .
- Diskriminatzailea negatiboa bada, ez dago erro errealik eta bi soluzioak zenbaki konplexuak dira eta bata bestearen zenbaki konplexu konjugatu dira.

■ <0: x2+1⁄2
■ =0: −4⁄3x2+4⁄3x−1⁄3
■ >0: 3⁄2x2+1⁄2x−4⁄3
Ebazpena osatu gabeko ekuazioetan
Ebazpen orokorrak baliozkoa da osatu gabeko ekuazioetarako, agertzen ez diren koefizienteak 0 bihurtuz. Dena den, ekuazio hauetarako ebazpen bereziak ere eman daitezke [7]:
- motako ekuazioaren erroak hauek dira:
- motako ekuazioaren erroak hauek dira:
- motako ekuazioaren erroa hau da: .
Faktorizazioa
Bigarren mailako ekuazio bat ebatzita, bi soluzioak hartzen badira (ikus Ebazpena, artikulu honetan bertan), honela faktoriza daiteke ekuazioa:
Soluzioa bakarra bada, honela faktorizatzen da:
Osatu gabeko ekuazioak honela faktorizatzen dira:
Maila handiagoko ekuazioak
motako ekuazioak bigarren mailako ekuazioen ebazpena erabiliz ebaz daitezke, aldagai aldaketa baten bitartez. Adibidez, ekuazio bikoadratikoa honela ebazten da[3]:
Bigarren mailako ekuazioko askatuz:
Eta aldagai aldaketa deseginez:
Hori horrela, ekuazio bikoadratikoak lau soluzio ezberdin ditu.
Ekuazio irrazionalak
Ekuazio irrazionaletan ezezaguna errokizun baten barnean agertzen da, besteak beste. Batzuetan, berreketak eginez, bigarren mailako ekuazio batera heltzen da[3]. Adibidez,
Erroketa isolatuz eta karratua kalkulatuz, bigarren mailako ekuazio batera heltzen da:
Ebazpena ohizko formulaz egiten da.
Ebazpen metodoak
Karratuaren osaketa
Karratuaren osaketa delako teknika aljebraikoaz, trinomioa erako adierazpenaz ordezten da. Horrela, ezezaguna aise bakantzen da.
- ekuaziotik abiatuz, a koefizienteaz zatitzen da lehendabizi:
- Trinomio karratu perfektoa sortzeko ezker aldean, konstantea gehitzen ekuazioaren alde bietan:
- Erro karratua hartuz alde bietan eta gaiak lekuz aldatuz, ekuazioaren soluziora heltzen da:
Koefizienteen eta erroen arteko erlazioak
ekuazioko koefizienteen eta ekuazioaren erro edo soluzioen artean berdintza erlazio hauek egiaztatzen dira, Vièteren formulei esker:
Erlazio hauek honela froga daitezke:
Beraz,
Eta, azkenik,
Ebazpenerako formula alternatibo bat
ekuazioa monomioaz zatituz hasiera batean, ebazpenerako beste formula bat lortzen da, karratuaren osaketa garatuz:
Eta azken berdintzatik bigarren mailako ekuazioaren erroen formula alternatiboa lortzen da:
- .
Ariketak

- Bigarren mailako ekuazioak
- Bigarren mailako ekuazio baten ebazpena lantzeko ariketa.
- Bigarren mailako ekuazioak ulertzeko bideoa.
- Bigarren mailako ekuazio baten ebazpena lantzeko ariketa II.
- Bigarren mailako ekuazioaren soluzio kopurua kalkulatzea diskriminatzailea erabilita.
- Bigarren mailako funtzioak irudikapen grafikoa: erpina.
- Bigarren mailako funtzioak irudikapen grafikoa: Erpina II.
- Bigarren mailako funtzioak irudikapen grafikoa: ©.
- Bigarren mailako funtzioak irudikapen grafikoa: ebakitze puntua..
Erreferentziak
- (Gaztelaniaz) Movimiento de caída de los cuerpos, Física con ordenador, Curso Interactivo de Física en Internet, Ángel Franco García. 2009-05-28.
- Euskalterm Terminologia Banku Publikoak bi terminoak biltzen ditu. 2009-05-27.
- Bigarren mailako ekuazioak, Hiru.com webgunean. 2009-05-27.
- Monic Polynomial, Wolfram Mathworld. 2009-05-29.
- Osatugabeak ax²+c=0, ax²+bx=0, "Descartes" webgunean. Ministerio de Educación. Gobierno de España. 2009-05-27.
- Diskriminatzailea eta ebazpenak, "Descartes" webgunean. Ministerio de Educación. Gobierno de España. 2009-05-27.
- (Gaztelaniaz) Ecuaciones de segundo grado incompletas, Kalipedia, Santillana. 2009-05-28.