Arrazoi (matematika)

Matematikaren esparruan, arrazoia magnitudeen (hau da, objektuen, pertsonen, ikasleen, goilarakaden, SIko unitateen...) arteko erlazio bitarra da. Oro har, a:b moduan adierazten da. Zenbakiekin ari garenean, arrazoia zatiki moduan adierazten da, eta batzuetan, zenbaki hamartar moduan.

Arrazoi geometrikoa

Arrazoi geometrikoa zatiki bidezko bi kopururen arteko konparaketa da, kopuru bat beste kopuruaren zenbatekoa den erakusten duena. Alderatzen ditugun bi magnitudeek neurri-unitate berdina badute, arrazoia adimentsionala da.

«X:Y» «X Y-ren» moduan irakurtzen da. Arrazoi horren X-ri zenbakitzailea deritzo eta Y-ri izendatzailea.

Adibidea

18:6-k 18 6ren adierazten du, eta horren emaitza 3 da (18k hiru 6ko ditu). Honen arrazoi geometrikoa 3 da, zenbakitzailea 18 eta izendatzailea 6 izanik.

Arrazoi aritmetikoa

Arrazoi aritmetikoa bi kopururen arteko diferentzia da. Arrazoi aritmetikoa, bi zeinuren bidez idatz daiteke: . zeinuarekin edo - zeinuarekin. Horrela, 6tik 4rako arrazoi aritmetikoa honela idazten da: 6-4 edo 6.4.

Arrazoi matematikoaren lehen terminoari zenbakitzaile deritzo eta, bigarrenari, izendatzaile. Horrela, 6-4 arrazoian 6 da zenbakitzailea eta 4 izendatzailea.

Arrazoi aritmetikoen propietateak

Arrazoi aritmetikoa bi kopururen arteko diferentzia baino ez denez, arrazoi aritmetikoaren propietateak diferentziaren propietateak dira.

Lehenengo propietatea

Zenbakitzaileari kopuru bat batu edo kentzen zaionean, arrazoi aritmetikoa handitu edo txikitu egiten da.

· Lehenengo kasua (zenbakitzaileari edozein kopuru batuz)

7tik 5erako arrazoi aritmetikoa 2ren berdina da:

Zenbakitzaileari 4 zenbakia batzen bazaio (edozein zenbaki izan daitekeela argi utziz), orduan (7+4)-5=6 dugu. Jatorrizko arrazoi aritmetikoaren erantzunean ikus daitekeenez (7-5=2), zenbakitzaileari 4 batu ondoren ((7+4)-5=6), erantzuna kopuru hori adina handitzen da.

· Bigarren kasua (zenbakitzaileari edozein kopuru kenduz)

18tik 3rako arrazoi aritmetikoa 15en berdina da:

Zenbakitzaileari 2 zenbakia kentzen bazaio (edozein zenbaki izan daitekeela argi utziz), orduan (18-2)-3=13 dugu. Jatorrizko arrazoi aritmetikoaren erantzunean ikus daitekeenez (18-3=15), zenbakitzaileari 2 kendu ondoren ((18-2)-3=13), erantzuna kopuru hori adina txikitzen da.

Bigarren propietatea

Arrazoi aritmetikoaren izendatzaileari kopuru bat batzen bazaio, arrazoia kopuru hori adina txikitzen da. Izendatzaileari kopuru bat kentzen bazaio aldiz, arrazoia kopuru hori adina handitzen da.

· Lehenengo kasua (izendatzaileari edozein kopuru batuz)

45etik 13rako arrazoi aritmetikoa 32ren berdina da.

Izendatzaileari 7 zenbakia batzen bazaio (edozein zenbaki izan daitekeela argi utziz), orduan 45-(13+7)=25 dugu. Jatorrizko arrazoi aritmetikoaren erantzunean ikus daitekeenez (45-13=32), zenbakitzaileari 7 batu ondoren (45-(13+7)=25), erantzuna kopuru hori adina txikitzen da, hau da, 32tik 25 izatera pasatzen da.

· Bigarren kasua (izendatzaileari edozein kopuru kenduz)

36tik 12rako arrazoi aritmetikoa 24ren berdina da.

Izendatzaileari 3 zenbakia kentzen bazaio (edozein zenbaki izan daitekeela argi utziz), orduan 36-(12-3)=27 dugu. Jatorrizko arrazoi aritmetikoaren erantzunean ikus daitekeenez (36-12=24), zenbakitzaileari 3 kendu ondoren (36-(12-3)=27), erantzuna kopuru hori adina handitzen da, hau da, 24tik 27 izatera pasatzen da.

Arrazoi sinplea

Hiru zenbakiren (a, b eta c) arrazoi sinplea[1], "(abc)" bidez adierazia, hiru horietako lehenengoak beste biekin duen diferentzien arteko zatidura da:

(abc)=(a-b)/(a-c).

Arrazoi bikoitza

Lau zenbakiren (a, b, c eta d) arrazoi bikoitza[1], "(abcd)" bidez adierazia, a, c eta d zenbakien arrazoi sinplearen eta b, c eta d zenbakien arrazoi sinplearen arteko zatidura da:

(abcd)=(acd)/(bcd).

Proportzioa eta ehunekoa

Arrazoiaren kopuru guztiak zenbaki berberaz biderkatzen baditugu, arrazoiaren balioa berdina izango da. Adibidez, 3:2 arrazoia 12:8ren berdina da. Hala ere, zenbakirik txikienak dituen adierazpena erabiltzea da ohikoena edo, bestela, ehunekoen bidez ere adieraz daiteke.

A, B, C eta D osagaietako nahasketa izanik, 5:9:4:2 arrazoian, Ako 5 zati daude Bko 9 zati bakoitzeko, Cko 4 zati bakoitzeko eta Dko 2 zati bakoitzeko. 5+9+4+2=20 denez, nahasketa osoak Ako 5/20, Bko 9/20, Cko 4/20 eta Dko 2/20 dauzka. Zenbaki bakoitza 20rekin zatituz eta 100ekin biderkatuz, ehunekoak lortuko ditugu: %25 A, %45 B, %20 C eta %10 D (arrazoia 25:45:20:10 bidez adieraztearen baliokidea da).

Erreferentziak

  1. Manuel., Castellet,. (cop. 1994). Álgebra lineal y geometría. Reverté ISBN 9788429150094. PMC 38863038..

Kanpo estekak

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.