Matematikaj funkcioj |
---|
fonta aro, cela aro • bildo, malbildo • bildaro, argumentaro |
Fundamentaj funkcioj |
Algebraj funkcioj: konstanta • lineara • kvadrata • polinoma • racionala • Transformo de Möbius Aliaj funkcioj: trigonometriaj • inversa trigonometria • hiperbola • eksponenta • logaritma • potenca |
Specialaj funkcioj |
erara • β • Γ • ζ • η • W de Lambert • de Bessel |
Nombroteoriaj funkcioj: |
τ • σ • de Möbius • φ • π • λ |
Ecoj: |
totaleco kaj parteco • pareco kaj malpareco • monotoneco • bariteco • periodeco • disĵeteco • surĵeteco • dissurĵeteco kontinueco • derivaĵeco • integralebleco |
En analitiko, racionala funkcio estas funkcio esprimebla kiel [frakcio]], kies numeratoro kaj denominatoro estas polinomoj. Divido de polinomoj, kiu plenumas racionalajn funkcioj nomas racionalajn esprimojn. Oni povas diri, ke rilato inter polinomoj kaj racionalaj funkcioj estas simila al rilato inter racionalaj nombroj kaj entjeroj.
Difino
Se
estas polinomaj funkcioj kun koeficientoj de laŭvola korpo K, kaj ankaŭ (a.v. ne ĉiuj estas nuloj), tiam funkcio:
nomas racionala funkcio[1]
La argumentaro de funkcio estas argumentaro de funkcio krom nullokoj de funkcio
Referencoj
- ↑ en multaj fontoj racionalan funkcion oni difinas pli ĝenerale kiel funkcio de multvariabla funkcio
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.