Matematiko (de la greka μαθημα [matema] - scienco, lernado) estas ekzakta logika dedukta scienco, kiu studas aksiomajn abstraktajn strukturojn (laŭ kvanto, formo, aranĝo) uzante logikan formalan lingvon. La specifaj strukturoj de matematiko plejofte originas de natursciencoj, plej multe de fiziko, sed matematikistoj difinas ankaŭ aliajn konceptojn por pure internaj bezonoj de la scienco. Matematiko jam penetris tra la tuta moderna vivo: modeligi precizajn instrumentojn, evoluigi novajn teknologiaĵojn kaj komputilojn, konstrui domojn; eĉ baki kukon bezonas aplikon de nocioj de nombroj, geometrio, mezuro kaj spaco. Matematiko estas iasence la fundamenta scienco.
Jen kelkaj difinaj citaĵoj pri matematiko:
|
|
Ekzistas du ĉefaj branĉoj de matematiko: pura kaj aplika. La pura matematiko esploras objektojn nur pro la teoria intereso, dum la aplika matematiko estigas rimedojn kaj teknikojn por solvi specifajn problemojn de sciencoj aŭ por praktike utiligi matematikon, ekz. en inĝenierado kaj ekonomio.
Etimologio
La vorto "matematiko" (greke: μαθηματικά) el la greka [máthēma] signifas lernadon, studadon, sciencon. Jam en la helena-romia antikva epoko ĝi akiris malpli vastan sencon "studo pri matematiko". La adjektiva formo estas μαθηματικός [mathēmatikós], "lernado-rilata", "studema". La vorto μαθηματικὴ τέχνη [mathēmatikḗ tékhnē], latine ars mathematica, signifis la matematikan arton.
Historio
Matematiko estas la plej malnova scienco. Homo probable inventis la nocion nombro same frue kiel li inventis lingvon. Oni lernis nombri objektojn, dividi ilin laŭnombre, multipliki, adicii kaj subtrahi (baza aritmetiko) ekz. ĉasaĵon. Oni lernis mezuri kaj kompari. Necesis baza geometrio por fari ilojn. Monolitikaj monumentoj pruvas la fruan scipovon de geometrio. Oni faris prognozojn pri regulaj ĉielaj naturfenomenoj, por povi semi kaj rikolti ĝustatempe (kalendaroj kaj astronomiaj kalkuloj). Terkulturo kaj konstruado de domoj kaj temploj postulis precizan kalkuladon kaj mezuradon de diversaj kvantoj, longoj, areoj, volumenoj kaj pezoj. Ankaŭ notado de nombroj kaj kalkuloj fariĝis pli kompletaj, interalie por justa impostado kaj komercado.
Religio kaj arto instigis pensi pri kontinueco, simetrio, transformiĝo de proprecoj kaj strukturoj. El tio fontas la emo de matematiko al perfektaj strukturoj.
Evoluo de matematiko estas intime interligita kun la homara evoluo tra la tuta historio. La moderna matematiko baziĝas sur jarmila evoluo, kie jen iu jen iu alia kulturregiono havis gvidan rolon. En la historio de matematiko la helena invento de pruvoj estis revolucia. La scienca revolucio en Eŭropo forte instigis evoluon de matematiko kaj ekde la 1800-jaroj matematiko diskreskadis forte, fariĝante pli kaj pli abstrakta. Fone tamen ĉiam estas praaj konceptoj kiaj spaco, kvanto, strukturo, precizeco. Interludo de matematiko kaj praktikaj bezonoj ĉiam estis forta.
Matematiko kiel scienco
Carl Friedrich Gauss, kiu mem estas konata kiel “la princo de la matematiko”, nomis ĝin “la reĝino de la sciencoj”. Kaj en la latina esprimo Regina Scientiarum kaj en la germana esprimo Königin der Wissenschaften, la vorto responda al scienco signifas (kampon de) "kono", kaj sendube matematiko estas scienco en tiu senco. La limigo de la signifo de "scienco" al naturaj sciencoj estas pli posta. Se oni komprenas la esprimon "scienco" tiel ke ĝi temas nur pri la materia mondo, tiam matematiko, aŭ minimume pura matematiko, ne estas scienco. La germana fizikisto Albert Einstein subtenis ke “ju pli matematikaj leĝoj parolas pri realo, des malpli certaj ili estas; kaj ju pli ili estas certaj, des malpli ili parolas pri realo”.
Matematika problemo
Matematika problemo estas problemo, kiun oni povas prezenti, analizi, kaj eble solvi per la metodoj de matematiko. Ĉi tiu povas esti realmonda problemo, kiel komputado de la orbitojn de la planedoj en la Sunsistemo, aŭ problemo de pli abstrakta naturo, kiel la problemoj de Hilbert. Ĝi ankaŭ povas esti problemo, kiu temas pri la naturo de matematiko mem, kiel la Rusela paradokso.
Temoj
Bazaj nocioj
Ĉefkampoj
Ĉefkonceptoj
- Algoritmo - Angulo - Bildigo - Derivaĵo - Diferencialo - Distanco - Distribuo - Ekvacio - Esprimo - Formulo - Fraktalo - Funkcio - Fourier-a analizo - Grafeo - Grupo - Integralo - Kartezia koordinato - Kvanto - Limeso - Linio - Malderivaĵo - Matrico - Operacio - Parametro - Progresio - Punkto - Regreso - Regulo - Rilato - Serio - Skalaro - Spaco - Strukturo - Surfaco - Tabelo - Termo - Variablo - Vektoro - Vico
Branĉoj de matematiko
- Algebro - Analitiko - Aritmetiko - Aro-teorio - Diskreta matematiko - Geometrio - Grafeoteorio - Kalkulo - Kombinatoriko - Matematika logiko - Logistiko - Matematika analizo - Matematika geografio - Matematika programado - Nombroteorio - Statistiko - Stokastiko - Teorio de kategorioj - Teorio de komputado - Probablo-teorio - Grupo-teorio - Teorio de ludoj - Trigonometrio - Topologio
Matematiko kaj aliaj sciencoj
Sciencoj rilataj al matematiko estas logiko, informadiko kaj statistiko. Fiziko mem baziĝas sur matematika priskribo de la mondo.
La matematika fiziko estas la scienca kampo kiu okupiĝas pri la intereco inter fiziko kaj matematiko. La Journal of Mathematical Physics difinas ĝin kiel «la aplikado de matematiko al problemoj de la medio de la fiziko kaj la disvolvigo de matematikaj metodoj taŭgaj por tiaj uzoj kaj por la disvolvigo de fizika sciaro.»,[1] la teorio de la elasteco, la akustiko, la termodinamiko, la elektro, la magnetismo kaj la aerodinamiko.
Praktikado de matematiko
Instruado de matematiko
Moore-metodo
|
La Moore-metodo estas instrumetodo pri matematiko nomita de Robert Lee Moore. La instruo ĉefe baziĝas laŭ la elekto de la lernantoj. Anstataŭ uzi lernejajn librojn, la lernantoj ricevas liston pri difinoj kaj teoremoj, kiujn ili devas pravigi aŭ klarigi en kursoĉambro. La ĉimetodaj praktikantoj sentas, ke la metodo vekas en lernanto profundan komprenon de la konstruoj kaj de la fundamentaj rezultoj, kontraŭe nura aŭskulto ne sufiĉus. Aliuloj certigas, ke tiu metodo ne povas koncerni la programtuton kiel faras klasika instruo.
Matematikistoj
- Niels Henrik Abel
- Al-Ĥorezmi
- Al-Kindi
- Arkimedo
- Stefan Banach
- Kazimierz Bartel
- János Bolyai
- Bernard Bolzano
- George Boole
- Augustin Louis Cauchy
- Leon Chwistek
- Diofanto el Aleksandrio
- Eratosteno
- Eŭdokso el Knido
- Eŭklido
- Leonhard Euler
- Pierre de Fermat
- Fibonacci
- Évariste Galois
- Carl Friedrich Gauss
- William Rowan Hamilton
- David Hilbert
- Omar Ĥajam
- Renato Kartezio
- Keplero
- Zdzisław Krygowski
- Pierre-Simon Laplace
- Gottfried Wilhelm Leibniz
- Stanisław Leśniewski
- Nikolaj Ivanoviĉ Lobaĉevskij
- Jan Łukasiewicz
- Józef Marcinkiewicz
- Benoît Mandelbrot
- Krzysztof Maurin
- John Napier
- Isaac Newton
- Otton Nikodym
- Blaise Pascal
- Pitagoro
- Marian Rejewski
- Bernhard Riemann
- Wacław Sierpiński
- Edward Stamm
- Hugo Steinhaus
- Taleso el Mileto
- Teono el Aleksandrio
- Karl Weierstrass
Esperanto kaj matematiko
La unua Matematika terminaro kaj krestomatio de Bricard aperis en 1905, sed ĝin forte influis ia naturisma pensofluo, kaj pluraj vortoj kiel funcio, fracio, binomjo estis poste anstataŭigitaj de aliaj pli lingvokonformaj, kiel funkcio, frakcio, binomo. Posta plurlingva terminaro eldonita en Germanio registris pli uzatan lingvaĵon, kaj havis sintezajn difinojn kaj tradukojn al pluraj lingvoj de la tiama Eŭropa Komunumo. La Matematika vortaro Esperanta-Ĉeĥa-Germana de Werner eldonita de AIS en 1990 enhavis jam 4000 terminojn kaj estis ĝis 2004 la plej aŭtoritata vortaro ĉi-tema (ekzistis ja, sed sen Esperanto, kvinlingva angla-germana- franca-rusa-slovaka matematika terminaro kun 25 000 terminoj!). La tute nova PIV2 (2002) kodigis novajn principojn pri scienca vortfarado, inkluzive la utiligon de sciencaj sufiksoj aŭ pseŭdosufiksoj; kaj ankaŭ REVO (Reta Vortaro) fariĝis intertempe aŭtoritata kaj estas ĉiam ĝisdatigata.
El Enciklopedio de Esperanto
|
Matematika vortaro kaj oklingva leksikono (2003)
Matematika vortaro kaj oklingva leksikono. Marc Bavant. Dobřichovice: KAVA-PECH, 2003. 231p. ISBN 80-85853-65-5. 21 cm.
Inĝ. Bavant zorge kaj kritike, sed tre respekte pri jam firmiĝinta tradicio, utiligas ĉiujn antaŭajn spertojn, kaj proponas tute novan verkon: matematikan vortaron kaj 8-lingvan leksikonon. La listigo estas klasika laŭ la alfabeta listo en Esperanto: ĉiu vorto havas laŭvican numeron, informon pri la aŭtoro kiu jam registris ĝin, difinon, eventuale rimarkon pri la konstruo de la vorto mem, kaj tujan tradukon en la germanan, anglan, francan kaj rusan. Al la laŭvica numero resendas la terminaroj en la ĉeĥa, hungara, kaj pola, tiel ke se iu volas scii kiel oni diras angle kaj pole iun koncepton pri kiu li konas la hungaran vorton, li serĉas la hungaran vorton kaj trovas numeron: ĉi numero sendas lin al la E-vorto, ĉe kiu li trovas la anglan tradukon, aŭ, eĉ ne pasante tra la Esperanta vorto, sendas lin al la pola terminaro, kie li trovas la polan tradukon. Se enestus nur tio, la vortaro ne multe distingiĝus de pluraj bonaj diverslingvaj terminaroj ekzistantaj ekster la E-mondo. Distingas ĝin tamen la precizeco de la difinoj kaj, por multegaj konceptoj difineblaj tra ekvacioj, la ekvacioj mem, tiel ke la vortaro alprenas la kvalitojn de konciza enciklopedio. En multaj aliaj difinoj aperas ankaŭ helpaj prezentoj de la vorto mem ene de ekzempla frazo, kaj tre interesaj estas la rimarkoj pri la jam ekzistantaj difinoj en aliaj vortaroj, kiuj ofte montras malsamajn nuancojn: tiujn nuancojn Bavant klarigas tre kompetente, ekzemple ĉe kapvortoj dimensio, diskreta, kartezia produto, plursenca funkcio, se citi nur kelkajn. Plurvortan esprimon oni trovas, eble per resendoj, tra ĉiuj unuopaj vortoj, tiel ke ne eblas maltrafi difinon, eĉ se oni aliras ĝin nur tra unu flanko.
La kapvortoj estas pli ol 1300, sed la subkapaj etendas la tuton al pli ol 2000 esprimoj. La aŭtoro intence ellasis ĉiujn terminojn, eĉ la bazajn, pri fakoj marĝenaj al matematiko, kiel statistiko aŭ ludteorio, prave konsiderante, ke por la bazaj terminoj PIV2 sufiĉas, kaj ke eniro en ĉi tiujn flankajn kampojn estus transirinta la difinitan taskon. Aparte utilaj kaj taŭgaj estas la 15 paĝoj de ilustritaj platoj, kie oni tuj havas unurigarde ĉiujn nomojn de la simboloj de logiko, de la operaciantoj en analitiko, de la diferencialaj operatoroj, ktp. Klaregaj bildoj prezentas ĉiujn matematikajn konceptojn renkontatajn en la lerneja studado ĝis la unua jarduo de universitata scienca fako. La malgrandaj sed klaraj litertipoj kaj la ege zorga tipografia aspekto de la simboloj estas atuto ŝuldata al la eldonisto, kiu en 230 paĝoj kuntenas vere grandan verkon, inter la plej bonaj fakaj vortaroj pri matematiko ekzistantaj surmerkate. Fierinde, ke ĝi aparte traktas la Esperantajn terminojn. [mankas fonto de tiu ĉi recenzo]
Bildaro
- Lorenca trajektorio
Vidu ankaŭ
Notoj
- ↑ Difino el Journal of Mathematical Physics.
Eksteraj ligiloj
En Esperanto
- Marc Bavant, Matematika vortaro kaj oklingva leksikono (2003)
- La kultura signifo de la matematiko, far Christer O. Kiselman, 1989
- Matematika terminaro – en la Jarlibro de UEA, 1954.
- Proponitaj ŝanĝoj pri matematiko kaj statistiko por la PIV
- TTT-ejo de la Internacia Asocio de Esperantistaj Matematikistoj
- Jan Werner: Matematika vortaro Esperanta-ĉeĥa-germana (1990) Arkivigite je 2006-10-26 per la retarkivo Wayback Machine
- Esperantaj verkoj pri matematiko Arkivigite je 2011-05-31 per la retarkivo Wayback Machine en la Kolekto por Planlingvo kaj Esperantomuzeo Arkivigite je 2015-03-25 per la retarkivo Wayback Machine
- Matematika terminaro. Arkivigite je 2014-01-08 per la retarkivo Wayback Machine