La artikolo estas parto de serio pri grafeoteorio.




Plej gravaj terminoj
grafeo
arbo
subgrafeo
ciklo
kliko
grado de vertico
grado de grafeo


Elektitaj klasoj de grafeoj
plena grafeo
plena dukolora grafeo
kohera grafeo
arbo
grafeo dudividebla
Fenda grafeo
regula grafeo
grafeo de Euler
grafeo de Hamilton
grafeo senrelifa

pli...

Grafeaj algoritmoj
A*
Bellman-Ford
Dijkstry
Fleury
Floyd-Warshall
Johnson
Kruskal
Prim
traserĉado de grafeo
– en larĝeco
– en profundo
plej proksima najbaro


Problemoj prezentataj kiel grafeaj
problemo de vojaĝisto
problemo de ĉina leteristo
problemo de marŝrutigado
problemo de kunigado de geedzoj


Aliaj
kodo de Gray
diagramo de Hasse
kodo de Prüfer


Reprezentado de grafeo Glosaro de grafeoteorio


En grafeoteorio, plena grafeo estas simpla grafeo, en kiu ĉiun paron de malsamaj verticoj konektas eĝo.

La plena grafeo de n verticoj havas eĝojn, kaj signiĝas per Kn. Ĝi estas regula grafeo de grado (n-1). Ĉiu plena grafeo estas kliko. Plenaj grafeoj estas maksimume koneksa ĉar la unusola vertica tranĉo kiu povas disigi la grafeon estas la tuta aro de verticoj.

Plena grafeo de n verticoj havas aŭtomorfiojn kie la signo "!" signifas faktorialon.

Plena grafeo kun n verticoj prezentas la verticojn kaj eĝo de (n-1)-simplaĵo. Tiel K3 respektivas al triangulo, K4 respektivas al kvaredro, K5 respektivas al kvinĉelo, kaj tiel plu.

K1 ĝis K4 estas ebenaj grafeo. Teoremo de Kuratowski asertas, ke ebena grafeo ne povas enhavi parton K5 (aŭ la plenan dukoloran grafeon K3, 3) kiel minoro. Pro tio ke Kn inkluzivas Kn-1, plena grafeo Kn kun n > 4 ne esta ebena.

K1: 0 laterojK2: 1 lateroK3: 3 laterojK4: 6 lateroj
K5: 10 laterojK6: 15 laterojK7: 21 laterojK8: 28 lateroj

Vidu ankaŭ

Eksteraj ligiloj

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.