Klasifiko de entjeroj laŭ dividebleco |
Formoj de faktorado: |
Primo |
Komponita nombro |
Pova nombro |
Kvadrato-libera entjero |
Aĥila nombro |
Nombroj kun limigitaj sumoj de divizoroj: |
Perfekta nombro |
Preskaŭ perfekta nombro |
Kvazaŭperfekta nombro |
Multiplika perfekta nombro |
Hiperperfekta nombro |
Unuargumenta perfekta nombro |
Duonperfekta nombro |
Primitiva duonperfekta nombro |
Praktika nombro |
Nombroj kun multaj divizoroj: |
Abunda nombro |
Alte abunda nombro |
Superabunda nombro |
Kolose abunda nombro |
Altkomponita nombro |
Supera altkomponita nombro |
Aliaj: |
Manka nombro |
Bizara nombro |
Amikebla nombro |
Kompleza nombro |
Societema nombro |
Nura nombro |
Sublima nombro |
Harmondivizora nombro |
Malluksa nombro |
Egalcifera nombro |
Ekstravaganca nombro |
Vidu ankaŭ: |
Divizora funkcio |
Divizoro |
Prima faktoro |
Faktorado |
En matematiko, kolose abunda nombro (iam mallongigita kiel CA) estas certa speco de natura nombro. Nombro n estas kolose abunda se kaj nur se ekzistas ε>0 tia ke por ĉiu k>1
kie σ(n) estas la dividanta funkcio (la sumo de ĉiuj pozitivaj divizoroj de n).
La unuaj kelkaj kolose abundaj nombroj estas 2, 6, 12, 60, 120, 360, 2520, 5040, ... .
Ĉiu kolose abunda nombro estas ankaŭ superabunda nombro, sed la malo ne estas vero.
Ĉiu kolose abunda nombro estas nombro de Harshad.
Rilato al la rimana hipotezo
Se la rimana hipotezo estas malvera, kolose abunda nombro estus kontraŭekzemplo. Aparte, la RH estas ekvivalento al la aserto ke jena neegalaĵo estas vera por n>5040:
kie estas la konstanto de Eŭlero-Mascheroni.
Ĉi tiu rezulto estas de Robin[1].
Lagarias[2] kaj Smith[3] diskutas ĉi tiun kaj similajn formulaĵojn de la RH.
Referencoj
- ↑ G. Robin, "Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann", Journal de Mathématiques Pures et Appliquées 63 (1984), pp. 187-213.
- ↑ J. C. Lagarias, An elementary problem equivalent to the Riemann hypothesis - Rudimenta problema ekvivalenta al la rimana hipotezo, American Mathematical Monthly - Amerika Matematiko Monate 109 (2002), pp. 534-543.
- ↑ Warren D. Smith, Arkivigite je 2008-05-27 per la retarkivo Wayback Machine A "good" problem equivalent to the Riemann hypothesis - "Bona" problemo ekvivalenta al la rimana hipotezo], 2005