Projekcio de kubo en 2 dimensiojn
4-hiperkuba projekcio

En geometrio, hiperkubo estas n-dimensia regula hiperpluredro, analogo de kvadrato (n = 2) kaj kubo (n = 3). Ĝi estas fermita, kompakta, konveksa figuro kies 1-skeleto konsistas el grupoj de kontraŭaj paralelaj strekoj laŭliniigita en ĉiu el la spacaj dimensioj, orte unu al la alia.

n-dimensia hiperkubo iamestas ankaŭ nomata kiel n-kubo.

La hiperkubo estas la speciala okazo de hiperortangulo.

Unuobla hiperkubo estas hiperkubo kies flanko havas longon 1. Ofte, la hiperkubo kies verticoj estas la 2n punktoj en Rn kun koordinatoj egalaj al 0 aŭ 1 estas nomata kiel "la" unuobla hiperkubo.

Punkto estas 0-hiperkubo. Se movi ĉi tiun punkto je distanco 1 ĝi balaas strekon kiu estas 1-hiperkubo de dimensio 1. Se movi ĉi tiun strekon perpendikulare al ĝi je distanco 1 ĝi balaas 2-dimensian kvadraton kiu estas 2-hiperkubo. Se movis la kvadraton perpendikulare al ĝia ebeno je distanco 1 ĝi balaas 3-dimensian kubon kiu estas 3-hiperkubo. Se movi kubon perpendikulare al ĝia 3-spaco ĝi balaas 4-dimensian 4-hiperkubon.

Rilatantaj familioj de hiperpluredroj

Hiperkuboj estas unu el la tri familioj de regulaj hiperpluredroj kiuj ekzistas en spacoj de ĉiu dimensio.

La aliaj du familioj estas la kruco-hiperpluredroj kaj la simplaĵoj. La kvara familio estas la malfiniaj hiperkubaj kahelaroj.

La duala hiperpluredro de n-hiperkubo estas n-kruco-hiperpluredro.

Alia rilatanta familio de uniformaj hiperpluredroj estas la duonverticaj hiperkuboj kiuj estas konstruitaj de hiperkuboj per alternado, do per forigo de duono de la verticoj kaj anstataŭigo ilin per (n-1)-simplaĵaj facetoj.

Eroj

Hiperkubo de dimensio n havas 2n flankoj. 1-dimensia streko havas 2 finaj punktoj; 2-dimensia kvadrato havas 4 laterojn; 3-dimensia kubo havas 6 2-dimensiaj edroj; 4-dimensia 4-hiperkubo havas 8 3-dimensiajn ĉeloj.

La kvanto de m-hiperkuboj eb la rando de n-hiperkubo estas

Tiel, la kvanto de verticoj de n-hiperkubo estas 2n.

Ekzemple, la rando de 4-hiperkubo enhavas 8 kuboj, 24 kvadratoj, 32 strekojn kaj 16 verticoj.

Dimensio Nomo Grafeo Simbolo de Schläfli
Figuro de Coxeter-Dynkin
Verticoj Lateroj Edroj Ĉeloj 4-hiperedroj 5-hiperedroj 6-hiperedroj 7-hiperedroj 8-hiperedroj
0 Punkto - 1
1 Streko {}
2 1
2 (plurlatero) Kvadrato {4}
4 4 1
3 (pluredro) Kubo
(sesedro)
{4,3}
8 12 6 1
4 (plurĉelo) 4-hiperkubo
(8-ĉelo)
{4,3,3}
16 32 24 8 1
5 5-hiperkubo {4,3,3,3}
32 80 80 40 10 1
6 6-hiperkubo {4,3,3,3,3}
64 192 240 160 60 12 1
7 7-hiperkubo {4,3,3,3,3,3}
128 448 672 560 280 84 14 1
8 8-hiperkubo {4,3,3,3,3,3,3}
256 1024 1792 1792 1120 448 112 16 1
9 9-hiperkubo {4,3,3,3,3,3,3,3}
512 2304 4608 5376 4032 2016 672 144 18

Vidu ankaŭ

Referencoj

Eksteraj ligiloj

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.