La fundamenta teoremo de algebro asertas, ke ĉiu ne-konstanta unu-variabla polinomo kun kompleksaj koeficientoj havas almenaŭ unu kompleksan radikon. Tio inkludas polinomojn kun reelaj koeficientoj, ĉar ĉiu reela nombro estas kompleksa nombro kun sia imaginara parto egala al nulo.
Alivorte (laŭ difino), la teoremo asertas, ke la kampo de kompleksaj nombroj estas algebre fermita.
La teoremo estas vortumebla ankaŭ jene: ĉiu ne-nula, unu-variabla, polinomo de grado n kun kompleksaj koeficientoj havas precize n kompleksajn radikojn (kalkulitajn kun sia obleco).
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.