La centritaj plurlateraj nombroj estas serioj de figurigaj nombroj, ĉiu formita per meza punkto, ĉirkaŭbarita per plurlateraj tavoloj kun konstanta kvanto de lateroj. Ĉiu latero de plurlatera tavolo enhavas je unu punkto pli ol latero de la antaŭa tavolo, tiel startanta de la dua plurlatera tavolo ĉiu tavolo de centrita k-latera nombro enhavas je k pli multajn punktojn ol la antaŭa tavolo.
Ĉi tiu serio konsistas el la
- centritaj triangulaj nombroj 1, 4, 10, 19, 31, ... (A005448 en OEIS)
- centritaj kvadrataj nombroj 1, 5, 13, 25, 41, ... (A001844 en OEIS)
- centritaj kvinlateraj nombroj 1, 6, 16, 31, 51, ... (A005891 en OEIS)
- centritaj seslateraj nombroj 1, 7, 19, 37, 61, ... (A003215 en OEIS)
- centritaj seplateraj nombroj 1, 8, 22, 43, 71, ... (A069099 en OEIS)
- centritaj oklateraj nombroj 1, 9, 25, 49, 81, ... (A016754 en OEIS)
- centritaj naŭlateraj nombroj 1, 10, 28, 55, 91, ... (A060544 en OEIS)
- centritaj deklateraj nombroj 1, 11, 31, 61, 101, ... (A062786 en OEIS)
kaj tiel plu.
Jenaj figuroj montras kelkajn ekzemplojn de centritaj plurlateraj nombroj kaj ilian geometrian konstruadon. (Kompari ĉi tiujn figurojn kun la figuroj en plurlatera nombro.)
Centritaj kvadrataj nombroj
1 | 5 | 13 | 25 | |||
---|---|---|---|---|---|---|
![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Centritaj seslateraj nombroj
1 | 7 | 19 | 37 | |||
---|---|---|---|---|---|---|
![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Kiel videblas en la figuroj pli supre, la n-a centrita k-latera nombro povas esti ricevita per meto de k kopioj de la (n-1)-a triangula nombro ĉirkaŭ centra punkto; pro tio, la n-a centrita k-latera nombro povas esti prezentita kiel
Same kiel estas en la okazo de regulaj plurlateraj nombroj, la unua centrita k-latera nombro estas 1. Tial, por ĉiu k, 1 estas ambaŭ k-latera kaj centrita k-latera. La sekva nombro kiu estas ambaŭ k-latera kaj centrita k-latera estas:
Tiel 10 estas ambaŭ triangula kaj centrita triangula, 25 estas ambaŭ kvadrata kaj centrita kvadrata, kaj tiel plu.
Primo p ne povas esti plurlatera nombro, escepte de tio ke p estas la dua p-latera nombro, sed multaj centritaj plurlateraj nombroj estas primoj.