Amortizitaj osciladoj de diversaj amortizaj rilatumoj .

En fiziko, amortizo[1] estas efiko sur oscila sistemo, kiu reduktas la amplitudon de oscilo.

Priskribo

Konsideru la jenan ordinaran diferencialan ekvacion de harmona oscilanto:

.

La solvo de tiu ekvacio,

,

reprezentas senfinan osciladon, en kiu

estas la angula frekvenco de oscilo. La amortizita harmona oscilanto estas priskribata de la jena modifita ekvacio:

.

La koeficiento nomiĝas la amortiza koeficiento; ĝia internacia mezurunuo estas kilogramo en sekundo (kg/s).

Klasifiko

La krita amortiza koeficiento estas la valoro

.
  • Se , la amortizo ne ekzistas, kaj la oscilo daŭras senhalte.
  • Se , la amortizo estas subkrita. Sub subkrita amortizo, oscilo daŭras dum iom da tempo sed haltas; la daŭro de oscilo estas proksimume .
  • Se , la amortizo estas superkrita. Sub superkrita amortizo, oscilo ne okazas, kaj la movo neniam ŝanĝas direkton.
  • La krita amortizo estas la limo inter la du reĝimoj.

La amortiza rilatumo estas la sendimensia nombro

.

Tiel, estas subkrita amortizo; estas superkrita amortizo.

Referencoj

Eksteraj ligiloj

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.