Ereignis (Wahrscheinlichkeitstheorie)
Ein Ereignis (auch Zufallsereignis) ist in der Wahrscheinlichkeitstheorie ein Teil einer Menge von Ergebnissen eines Zufallsexperiments, dem eine Wahrscheinlichkeit zugeordnet werden kann. Beispielsweise wird das Ereignis „eine gerade Zahl zu würfeln“ der Teilmenge aus der Gesamtmenge aller möglichen Ergebnisse (dem Ergebnisraum) zugeordnet. Man spricht davon, dass ein Ereignis eintritt, wenn es das Ergebnis des Zufallsexperiments als Element enthält.
Das mit der Ergebnismenge identische Ereignis bezeichnet man als sicheres Ereignis, da es immer eintritt. Im Gegensatz dazu bezeichnet man das mit der leeren Menge identische Ereignis als unmögliches Ereignis: Es tritt niemals ein. Beim Beispiel des Würfelwurfs ist das sichere Ereignis die Menge und das unmögliche Ereignis die leere Menge .
Definition
Ist ein Wahrscheinlichkeitsraum, so wird ein Ereignis genannt. Die Ereignisse eines Wahrscheinlichkeitsraum sind somit diejenigen Teilmengen der Ergebnismenge , die in der σ-Algebra , dem sogenannten Ereignissystem liegen.
Die Ereignisse sind diejenigen Mengen, denen eine Wahrscheinlichkeit durch ein Wahrscheinlichkeitsmaß zugeordnet ist. Im allgemeineren Rahmen der Maßtheorie heißen die Ereignisse auch messbare Mengen.
Beispiele
Endliche Ergebnismenge
Gegeben sei die Ergebnismenge
- ,
versehen mit dem Ereignissystem
- .
Dann sind zum Beispiel die Mengen und die Mengen Ereignisse, da sie im Ereignissystem enthalten sind. Die Menge ist kein Ereignis. Sie ist zwar eine Teilmenge der Ergebnismenge, aber nicht im Ereignissystem enthalten. Da das Ereignissystem eine σ-Algebra ist, sind die Ergebnismenge und die leere Menge immer Ereignisse.
Diskrete Ergebnismenge
Für beliebige diskrete Ergebnismengen , also solche mit höchstens abzählbar unendlich vielen Elementen, setzt man meist die Potenzmenge als Ereignissystem. Dann ist jede Teilmenge der Ergebnismenge ein Ereignis, da die Potenzmenge genau die Menge aller Teilmengen ist.
Reelle Ergebnismengen
Für reelle Ergebnismengen setzt man meist die Borelsche σ-Algebra als Ereignissystem. Hier sind dann zum Beispiel alle offenen Intervalle, also Mengen der Form mit , Ereignisse. Tatsächlich sind diese Mengensysteme so groß, dass fast alles, was man sinnvoll definieren kann, ein Ereignis ist. Dennoch gibt es Mengen, die – bezogen auf die Borelsche σ-Algebra als Ereignissystem – keine Ereignisse sind, wie zum Beispiel die Vitali-Mengen.
Mengenoperationen mit Ereignissen
Ist ein Ergebnis eines Zufallsexperiments und ein Ereignis, dann sagt man im Falle auch: Das Ereignis tritt ein.
Teilmengen und Gleichheit
Falls ein Ereignis eine Teilmenge eines weiteren Ereignisses ist (notiert als ), dann tritt mit dem Ereignis stets auch das Ereignis ein. Man sagt dann auch: Das Ereignis zieht das Ereignis nach sich. Für die Wahrscheinlichkeiten gilt in diesem Fall . Das heißt: Zieht das Ereignis das Ereignis nach sich, dann ist die Wahrscheinlichkeit von mindestens so groß wie die von .
Es gilt genau dann, wenn und gilt. Gleichheit von Ereignissen bedeutet also, dass das Ereignis das Ereignis in gleicher Weise nach sich zieht wie das Ereignis das Ereignis .
Schnittmenge und Disjunktheit
Die Schnittmenge zweier Ereignisse ist wieder ein Ereignis. Es tritt genau dann ein, wenn und beide eintreten.
Wenn gilt, also das gemeinsame Eintreten von und unmöglich ist, dann sagt man, die zwei Ereignisse schließen einander aus. Die Ereignisse und werden dann auch disjunkt oder unvereinbar genannt.
Sind allgemeiner Ereignisse, dann ist der Schnitt
das Ereignis, das genau dann eintritt, wenn alle eintreten. Die Ereignisse heißen paarweise disjunkt, wenn für alle mit gilt.
Vereinigung
Auch die Vereinigungsmenge zweier Ereignisse ist wieder ein Ereignis. Es tritt genau dann ein, wenn entweder oder oder beide Ereignisse eintreten. Anders ausgedrückt: tritt ein, wenn mindestens eines der beiden Ereignisse oder eintritt.
Für die Wahrscheinlichkeit von Schnitt- und Vereinigungsmenge gilt stets die Formel
Speziell ist im Falle disjunkter Ereignisse .
Sind allgemeiner Ereignisse, dann ist die Vereinigung
das Ereignis, das genau dann eintritt, wenn mindestens eines der eintritt.
Es gilt stets die sogenannte σ-Subadditivität
Im Falle paarweise disjunkter Ereignisse gilt hierbei Gleichheit.
Für die Wahrscheinlichkeit von beliebigen Vereinigungen endlich vieler Ereignisse gilt die Siebformel.
Komplement und Differenz
Das komplementäre Ereignis tritt genau dann ein, wenn das Ereignis nicht eintritt. Es wird auch Gegenereignis genannt und mit (alternativ auch mit ) bezeichnet. Seine Wahrscheinlichkeit ist
Für die Komplemente von Schnitt- und Vereinigungsmengen gelten die de Morganschen Formeln
Speziell für zwei Ereignisse gilt sowie .
Die Differenzmenge ist das Ereignis, das genau dann eintritt, wenn das Ereignis , aber nicht gleichzeitig das Ereignis eintritt. Es gilt
Für seine Wahrscheinlichkeit gilt . Im Spezialfall folgt .
Symmetrische Differenz
Eine weitere Mengenoperation ist die symmetrische Differenz
zweier Ereignisse und . Das Ereignis tritt genau dann ein, wenn entweder oder eintritt (aber nicht beide), also wenn genau eines der beiden Ereignisse eintritt. Es gilt
Unabhängige Ereignisse
Die zwei Ereignisse und heißen voneinander unabhängig, wenn
Unter Verwendung der Formel für die bedingte Wahrscheinlichkeit lässt sich das als
schreiben, vorausgesetzt .
Allgemeiner heißt eine Familie von Ereignissen unabhängig, wenn für jede endliche Teilmenge gilt:
Die Ereignisse heißen paarweise unabhängig, wenn
für alle gilt. Unabhängige Ereignisse sind paarweise unabhängig, die Umkehrung gilt jedoch im Allgemeinen nicht.
Spezielle Ereignisse
Elementarereignis
Mitunter werden die einelementigen Ereignisse auch als Elementarereignisse bezeichnet.[1] Ist höchstens abzählbar, dann lässt sich durch Festlegen der Wahrscheinlichkeiten aller Elementarereignisse mit Hilfe von
die Wahrscheinlichkeit aller Ereignisse bestimmen. Hierbei müssen die so gewählt sein, dass sowie
gilt.
Es ist allerdings zu beachten, dass mitunter in der Literatur die Ergebnisse selbst Elementarereignisse genannt werden. Diese sind dann jedoch keine Ereignisse, denn es handelt sich nicht um Teilmengen von .
Weiterhin muss für die einelementige Menge nicht unbedingt im Ereignisraum liegen. Sie ist dann kein Ereignis.
Fast sicheres Ereignis
Ein Ereignis heißt fast sicher, falls gilt.[2]
Fast unmögliches Ereignis
Ein Ereignis heißt fast unmöglich, falls gilt.[2]
Definition
Bezogen auf ein System von Ereignissen heißt ein Ereignis atomares Ereignis, wenn es keine zwei Ereignisse mit , , gibt.[2]
Eigenschaften
- Jedes Elementarereignis, das in enthalten ist, ist ein atomares Ereignis.
- Nicht jedes atomare Ereignis ist ein Elementarereignis. Beispielsweise sind in der Ereignisalgebra
- die Ereignisse und atomare Ereignisse, aber nur ist auch ein Elementarereignis.
Definition
Ein Ereignis heißt Atom des Wahrscheinlichkeitsraums , falls gilt und falls für jedes Ereignis mit entweder oder gilt. Ein Wahrscheinlichkeitsraum heißt atomlos, wenn kein Ereignis ein Atom ist.[3]
Atomlose Wahrscheinlichkeitsräume sind von Interesse, da sie reelle Zufallsvariablen mit stetiger Verteilungsfunktion zulassen.[4] Insbesondere existiert eine Zufallsvariable mit einer stetigen Gleichverteilung auf dem Intervall .[5]
Literatur
- Norbert Henze: Stochastik für Einsteiger: Eine Einführung in die faszinierende Welt des Zufalls. 10. Auflage, Springer Spektrum, Wiesbaden 2013, ISBN 978-3-658-03076-6, doi:10.1007/978-3-658-03077-3. S. 5–9, 283 (Auszug (Google))
- P. H. Müller (Hrsg.): Lexikon der Stochastik – Wahrscheinlichkeitsrechnung und mathematische Statistik. 5. Auflage. Akademie-Verlag, Berlin 1991, ISBN 978-3-05-500608-1, Ereignisfelder und Wahrscheinlichkeitsalgebren (fields of events and probability algebras), S. 94–95.
- Rainer Schlittgen: Einführung in die Statistik. 9. Auflage. Oldenbourg Wissenschaftsverlag, Oldenbourg 2000, ISBN 3-486-27446-5
Einzelnachweise
- Klaus D. Schmidt: Maß und Wahrscheinlichkeit. 2., durchgesehene Auflage. Springer, Berlin / Heidelberg 2011, ISBN 978-3-642-21025-9, S. 195, doi:10.1007/978-3-642-21026-6.
- P. H. Müller (Hrsg.): Lexikon der Stochastik. Berlin 1991, S. 95.
- Hans Föllmer, Alexander Schied: Stochastic Finance – An Introduction in Discrete Time. 4. überarbeitete und erweiterte Auflage. De Gruyter, Berlin / Boston 2016, ISBN 978-3-11-046344-6, S. 30, 547, doi:10.1515/9783110463453.
- Hans Föllmer, Alexander Schied: Stochastic Finance – An Introduction in Discrete Time. 4. überarbeitete und erweiterte Auflage. De Gruyter, Berlin / Boston 2016, ISBN 978-3-11-046344-6, Prop. A 31, S. 547, doi:10.1515/9783110463453.
- Hans Föllmer, Alexander Schied: Stochastic Finance – An Introduction in Discrete Time. 4. überarbeitete und erweiterte Auflage. De Gruyter, Berlin / Boston 2016, ISBN 978-3-11-046344-6, Lemma A 32, S. 548, doi:10.1515/9783110463453.