Zeta-Funktion

Ursprünglich war mit Zeta-Funktion oder -Funktion in der Mathematik die holomorphe[1] komplexe Funktion

, mit

gemeint. Heute heißt diese genauer riemannsche Zeta-Funktion, zu Ehren von Bernhard Riemann, der um 1850 bedeutende Arbeiten zur Untersuchung dieser Funktion im Komplexen leistete. Als reelle Funktion geht das Studium der Zeta-Funktion auf Leonhard Euler in den 1730er und 1740er Jahren zurück, der unter anderem die Werte der Zeta-Funktion bei positiven geradzahligen Argumenten bestimmte und die Produktformel fand.

Einige Werte sind[2]

Seither wurden viele in Definition oder Eigenschaften ähnliche oder verallgemeinernde Funktionen untersucht, denen dann auch der Name Zeta-Funktion zusammen mit dem ihres Entdeckers gegeben wurde.

Die wichtigsten weiteren Zetafunktionen sind:

Ebenfalls mit der riemannschen Zeta-Funktion verwandt, ohne das „Zeta“ im Namen zu tragen, sind die dirichletschen L-Funktionen, die dirichletsche Eta-Funktion und die dirichletsche Beta-Funktion .

Literatur

  • Pierre Cartier: An introduction to Zeta Functions, in M. Waldschmidt u. a. (Hrsg.), From Number Theory to Physics, Springer 1992, S. 1–63
  • Anton Deitmar: A panorama of Zeta functions, in E. Kähler, Mathematical Works, De Gruyter 2003, Arxiv
  • Mircea Mustaţă: Zeta functions in algebraic geometry, Vorlesung 2011 (PDF)
  • Bernhard Schiekel: Zetafunktionen in der Physik – eine Einführung doi:10.18725/OPARU-4418.
  • Alan David Thomas: Zeta-Functions: an introduction to algebraic geometry, Pitman 1977

Einzelnachweise

  1. Brockhaus Enzyklopädie in 24 Bänden, 19. Aufl., Bd. 18, S. 407, Mannheim 1992.
  2. CRC Concise Encyclopedia of Mathematics, ed. Eric W. Weinstein. Chapman&Hall: Boca Raton [u. a.]. 2nd ed. 2003, S. 2564.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.