Vibrometer

Ein Vibrometer (Kurzform für Laser-Doppler-Vibrometer) ist ein Messgerät zur Quantifizierung mechanischer Schwingungen. Es kann zur Messung von Schwingungsfrequenz und -amplitude verwendet werden.

Funktionsprinzip eines Laser-Doppler-Vibrometers

Vibrometer enthalten einen Laser, der auf die zu messende Oberfläche fokussiert wird. Aufgrund des Doppler-Effekts verschiebt sich bei einer Bewegung der zu messenden Oberfläche die Frequenz des zurückgestreuten Laserlichts. Diese Frequenzverschiebung wird im Vibrometer mittels eines Interferometers ausgewertet und als Spannungssignal oder digitaler Datenstrom ausgegeben. Ein Scanning-Vibrometer erlaubt eine flächenhafte Messung von Schwingungen.

Anwendung

Vibrometer werden in einer Vielzahl von wissenschaftlichen, industriellen und medizinischen Bereichen eingesetzt. Hier einige Beispiele:

  • Luft- und Raumfahrt – Vibrometer werden als Werkzeuge zur zerstörungsfreien Überprüfung von Flugzeugkomponenten eingesetzt.[1]
  • Akustik – Vibrometer sind Standard-Werkzeuge für das Design von Lautsprechern. Darüber hinaus wurden sie schon verwendet, um das Schwingverhalten von Musikinstrumenten zu erfassen.[2]
  • Architektur – Vibrometer werden verwendet, um das Schwingverhalten von Gebäuden und Brücken (Brückeninstandhaltung) zu erfassen.[3][4]
  • Automobilbau – Vermessung der Schwingungsmoden einzelner Komponenten oder ganzer Fahrzeuge.[5]
  • Schallschnellenmessung: Eine Schallschnelle bringt eine dünne Folie in Schwingung. Diese Schwingung der Folie wird mit einem Laser-Doppler-Vibrometer gemessen und daraus der Schalldruck ermittelt.[6]
  • Biologie – Vibrometer wurden zum Beispiel für die Untersuchung des Trommelfells im Ohr[7] oder für die Visualisierung der Kommunikation von Insekten eingesetzt.[8]
  • Kalibrierung – Da Vibrometer im Verhältnis zur Wellenlänge des Lichts kalibriert werden, setzt man sie ein, um andere Messinstrumente zu kalibrieren.[9]
  • Festplatten – Vibrometer wurden bereits für die Untersuchung von Festplatten, besonders in der Positionierung des Lesekopfes, eingesetzt.[10]
  • Finden von Landminen – Vibrometer haben gezeigt, dass sie vergrabene Landminen erkennen können. Eine Geräuschquelle, beispielsweise ein Lautsprecher, regen den Boden zum minimalen Schwingen an. Diese Schwingungen werden vom Vibrometer erfasst. Der Boden über einer vergrabenen Landmine zeigt ein anderes Schwingverhalten als Boden ohne Landmine. Minenerkennung mit einstrahligen Vibrometern,[11] einer Anordnung von Vibrometern,[12] und mehrstrahligen Vibrometern[13] wurde bereits erfolgreich durchgeführt.
  • Sicherheit – Auf Grund ihrer Eigenschaft der berührungslosen Schwingungsmessung eignen sich Vibrometer auch zur Erfassung von Stimmen über große Entfernungen. Mit Hilfe eines visuellen Sensors (Kamera) wird das Vibrometer auf eine Schall-reflektierende Oberfläche in der Nähe des Ziels gerichtet, um die akustischen Signale aufzufangen.[14]
  • Materialforschung - Durch Ihre berührungslose Messmethodik erlauben Laser Vibrometer, insbesondere Scanning Laser Vibrometer, die Untersuchung von Materialoberflächen. Dies erlaubt das Auffinden von Fehlstellen in Kristallgittern oder ähnlichen Materialien aufgrund des unterschiedlichen Streuverhaltens von Schwingungen an diesen Stellen.[15]

Einzelnachweise

  1. James M. Kilpatrick, Vladimir Markov: Eighth International Conference on Vibration Measurements by Laser Techniques: Advances and Applications. Hrsg.: Enrico P. Tomasini (= Eighth International Conference on Vibration Measurements by Laser Techniques: Advances and Applications. Band 7098). 2008, Matrix laser vibrometer for transient modal imaging and rapid nondestructive testing, S. 709809, doi:10.1117/12.802929.
  2. Bissinger, George. and Oliver, David: 3-D Laser Vibrometry on Legendary Old Italian Violins. In: Sound and Vibration. Juli 2007 (sandv.com [PDF; abgerufen am 24. Januar 2013]).
  3. Horst Falkner: Monitoring im Bauwesen. (Memento des Originals vom 31. Juli 2013 im Internet Archive)  Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/www.bvpi.de (PDF; 1,1 MB) In: Der Prüfingenieur. Jg. 2004, Heft 4, S. 41.
  4. Uwe Friebe, Gert Gommola: 90 Jahre Brückenmesswesen bei der Eisenbahn in Deutschland. In: Messtechnik im Bauwesen. Ernst & Sohn Special 2013, S. 36.
  5. William N. Sharpe, Jr., William N. Sharpe: Springer Handbook of Experimental Solid Mechanics. Springer, 2008, ISBN 978-0-387-26883-5, S. 834 (google.com)., S. 834
  6. Q. Leclère,B. Laulagnet: Particle velocity field measurement using an ultra-light membrane. In: Applied Acoustics. Band 69, Nr. 4, 2008, S. 302–310, doi:10.1016/j.apacoust.2006.11.009.
  7. Huber, Alexander M, C Schwab, T Linder, SJ Stoeckli, M Ferrazzini, N Dillier, U Fisch: Evaluation of eardrum laser doppler interferometry as a diagnostic tool. In: The Laryngoscope. 111. Jahrgang, Nr. 3, 2001, S. 501–7, doi:10.1097/00005537-200103000-00022, PMID 11224783 (uzh.ch [PDF]).
  8. Fonseca, P.J. and Popov, A.V.: Sound radiation in a cicada: the role of different structures. In: Journal of Comparative Physiology A. 175. Jahrgang, Nr. 3, 1994, doi:10.1007/BF00192994.
  9. Sutton, C. M.: Accelerometer Calibration by Dynamic Position Measurement Using Heterodyne Laser Interferometry. In: Metrologia. 27. Jahrgang, Nr. 3, 1990, S. 133, doi:10.1088/0026-1394/27/3/004.
  10. Abdullah Al Mamun, GuoXiao Guo, Chao Bi: Hard Disk Drive: Mechatronics And Control. CRC Press, 2007, ISBN 978-0-8493-7253-7 (google.com [abgerufen am 24. Januar 2013]).
  11. Ning Xiang, James M. Sabatier: Detection and Remediation Technologies for Mines and Minelike Targets V. Hrsg.: Abinash C. Dubey, James F. Harvey, J. Thomas Broach, Regina E. Dugan (= Detection and Remediation Technologies for Mines and Minelike Targets V. Band 4038). 2000, Land mine detection measurements using acoustic-to-seismic coupling, S. 645, doi:10.1117/12.396292.
  12. Richard D. Burgett, Marshall R. Bradley, Michael Duncan, Jason Melton, Amit K. Lal, Vyacheslav Aranchuk, Cecil F. Hess, James M. Sabatier, Ning Xiang: Detection and Remediation Technologies for Mines and Minelike Targets VIII. Hrsg.: Russell S. Harmon, John H. Holloway, Jr, J. T. Broach (= Detection and Remediation Technologies for Mines and Minelike Targets VIII. Band 5089). 2003, Mobile mounted laser Doppler vibrometer array for acoustic landmine detection, S. 665, doi:10.1117/12.487186.
  13. Amit Lal, Slava Aranchuk, Valentina Doushkina, Ernesto Hurtado, Cecil Hess, Jim Kilpatrick, Drew l'Esperance, Nan Luo, Vladimir Markov: Detection and Remediation Technologies for Mines and Minelike Targets XI. Hrsg.: J. Thomas Broach, Russell S. Harmon, John H. Holloway, Jr (= Detection and Remediation Technologies for Mines and Minelike Targets XI. Band 6217). 2006, Advanced LDV instruments for buried landmine detection, S. 621715, doi:10.1117/12.668927.
  14. Rui Li, Tao Wang, Zhigang Zhu, Wen Xiao: Vibration Characteristics of Various Surfaces Using an LDV for Long-Range Voice Acquisition. In: IEEE Sensors Journal. 11. Jahrgang, Nr. 6, 2011, S. 1415, doi:10.1109/JSEN.2010.2093125.
  15. Materialforschung - NDT zerstörungsfrei messen. Abgerufen am 29. August 2019.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.