Sulfosalze

Als Sulfosalze bezeichnet man in der Chemie die Salze der Thiosäuren (H3(AsS3), H3(BiS3), H3(SbS3) etc.) und ähnlicher Verbindungen.

In der Systematik der Minerale bilden die strukturell sehr heterogenen Sulfosalze eine wichtige Gruppe in der Klasse der Sulfide.

Strunz und Nickel verwenden für die Strunz Mineralogical Tables folgende Definition:[1]

Sulfosalze zeichnen sich strukturell durch Komplexanionen mit den Grundbausteinen [AsS3]3−, [SbS3]3− und [BiS3]3− aus. Die Ionen dieser Anionenkomplexe sind in Form einer trigonalen Pyramide angeordnet mit den drei Schwefelanionen an der Pyramidenbasis und dem Halbmetallkation an der Spitze. Die Halbmetallkationen verfügen über ein weiteres, freies Elektronenpaar an der Pyramidenspitze, das an keinen Bindungen beteiligt ist. Die Klassifikation der Sulfosalze nach Strunz erfolgt zum einen strukturell nach dem Konzept von SnS- und PbS-Strukturtypen und daraus abgeleiteten homologen Reihen[2] und zum anderen nach dem chemisch-strukturellen Schema von Nowacki[3] und Edenharter.[4]

Das Sulfosalz-Unterkomitee der IMA-Kommission zur Erzmineralogie entwickelt eine überarbeitete Systematik der Sulfosalze mit einer allgemeiner gefassten Definition:[5]

Sulfosalze sind Minerale mit Komplexanionen aus Halbmetall- oder Metallkationen und Chalkogenidanionen. Das Kriterium zur Abgrenzung zu anderen Chalkogenidverbindungen ist das Fehlen von Bindungen der zentralen Kationen in den Anionenkomplexen zu den übrigen Kationen in der Struktur. Nach dieser Definition zählen neben den klassischen Sulfosalzen der Strunz’schen Gruppen 2H und 2J auch zahlreiche Chalkogenide weiterer Gruppen (z. B. 2E, 2F, 2G, 2K, 2L) zu den Sulfosalzen, aktuell rund 260 Minerale. Bei weiteren 200 ist die Zugehörigkeit noch ungeklärt.

Die Zusammensetzungen gehorchen der allgemeinen Formel Am(BnXp), worin

  • A für die Metallkationen Pb2+, Ag+, Cu+, Zn2+, Hg2+, Tl+, Cd2+, Fe2+, Sn2+, Mn2+, Au+ steht,
  • B für die Kationen As3+, Sb3+, Bi3+, Te4+, Sn4+, Ge4+, As5+, Sb5+, V5+, Mo6+, W6+, In
  • und X für Chalkogenanionen S2−, Se2−, Te2−, die teilweise ersetzt sein können durch Cl oder O2−.

Die Strukturformeln sind mitunter komplex und variabel und häufig nicht stöchiometrisch, das heißt die Anzahl der Atome stehen nicht immer im ganzzahligen Verhältnis zueinander. Mitunter werden für ein Mineral verschiedene Formeln angegeben. Häufig treten verschiedene Sulfosalzminerale mit ähnlichen Zusammensetzungen oder Strukturen in submikroskopischen, regelmäßigen Verwachsungen auf. Bis vor kurzem wurden einige dieser Verwachsungen noch als eigenständige Minerale angesehen.

Sulfosalze sind undurchsichtig mit meist bleigrauem metallischem Glanz und mittlerem Reflexionsvermögen. Ihre Mohshärte ist gering (2–4) und ihre Dichte mit 4–7 g/cm³ sehr hoch. Die elektrischen Eigenschaften einiger Sulfosalze machen sie für technische Anwendungen als Halbleiter interessant.

Etymologie und Geschichte

Der Begriff wurde im 19. Jahrhundert in Analogie zu den Oxysalzen eingeführt. Die Komplexanionen zum Beispiel der Arsenate, Phosphate oder Silikate können dort anhand der Bindungsstärken klar als eigenständige Baueinheiten in der Gesamtstruktur ausgemacht werden. Innerhalb der oxidischen Anionenkomplexe treten starke Bindungen mit hohem kovalenten Anteil auf, wohingegen die Bindungen zu den übrigen Kationen deutlich schwächer mit überwiegend ionischen Charakter sind. Mit der Einführung des Begriffes „Sulfosalz“ verband man die Vorstellung, dass bei den Salzen der Sulfonsäuren vergleichbare Verhältnisse vorherrschen. Spätere Untersuchungen konnten dies jedoch nicht immer bestätigen. Die Bindungsverhältnisse in Sulfosalzen sind komplexer mit deutlich metallischen Charakter und die Bindungsstärken zwischen den Kationen und den Schwefelionen der Anionenkomplexe sind nicht immer schwächer als die z. B. innerhalb der AsS3-Gruppe.

Bildung und Fundorte

Sulfosalze kommen verbreitet in hydrothermalen Lagerstätten vor, wo sie sich sowohl bei niedrigen bis mittleren Temperaturen (Sulfoantimotite, Sulfoarsenite) wie auch höheren Temperaturen (Sulfobismuthite) abscheiden. Weiterhin findet man sie als Ausscheidungsprodukte unterseeischer Vulkane, den Schwarzen Rauchern und Weißen Rauchern.

Struktur

Strukturell unterscheiden sich Minerale dieser Gruppe von anderen Chalkogeniden wie z. B. Arsenopyrit (FeAsS) oder Löllingit (FeAs2) dadurch, dass die A-Kationen keine Bindungen mit den B-Halbmetallionen eingehen. Meistens bilden die B-Kationen pyramidale BS3-Anionenkomplexe mit den drei Anionen an der Basis und dem Halbmetallkation an der Spitze, das über ein freies Paar ungebundener Elektronen verfügt. Andere Anionenumgebungen insbesondere von Bi und Sb kommen aber vor.

Verwendung

Die industrielle Bedeutung der Sulfosalze ist gering. Sie haben lokale Bedeutung als Rohstoff für seltene Metalle wie Ag, Au, Tl, Te. Aktuell gewinnen einige Sulfosalze wegen ihrer Halbleitereigenschaften starkes Interesse der Industrie. So können synthetische Sulfosalze (Snx(Sb,Bi)y(S,Se)z, CuInSe2) zur Herstellung von Solarzellen verwendet werden. Der Einsatz dieser Materialien verspricht einen höheren Wirkungsgrad als Silizium bei geringeren Produktionskosten. Ein weiteres Anwendungsgebiet ist die Herstellung von Detektoren für Röntgenstrahlung.

Klassifizierung

Chemische Klassifizierung
AnionKationChemischer Name
S2−As3+Thioarsenite
Sb3+Thioantimonite
Bi3+Thiobismuthite
Te4+Thiotellurite
(P5+)Thiophospate
As5+Thioarsenate
Sb5+Thioantimonate
Sn4+Thiostannate
Ge4+Thiogermanate
V5+Thiovanadate
Mo6+Thiomolybdate
W6+Thiowolframate
Se2−As3+Selenioarsenite
Sb3+Selenioantimonite
Bi3+Seleniobismuthite
Sb5+Selenioantimonate
Te2−Bi3+Tellurobismuthite

Eine Klassifizierung allein nach der Zusammensetzung unterteilt die Sulfosalze nach dem Aufbau ihrer Komplexanionen (siehe Tabelle).

Hier wiedergegeben ist die aktuelle mineralogische Klassifizierung des IMA-Komitees für Sulfosalze.[5] Für die Sulfosalze mit As3+, Sb3+, Bi3+, Te4+ auf der B-Position geben sie eine Einteilung zuerst nach chemisch definierten Klassen und darunter rein strukturell mit folgenden Ebenen an:

In den Strukturformeln der Gruppen und Untergruppen werden folgende Abkürzungen verwendet:

Binäre Sulfosalze M+PnCh2

Matildit-Serie: (Strunz: 2.CD.15)

Aramayoit-Serie: (Strunz: 2.HA.25)

Cuboargyrit-Typ: (Strunz: 2.CD.10)

  • Cuboargyrit: AgSbS2

Miargyrit-Typ: (Strunz: 2.HA.10)

Smithit-Typ: (Strunz: 2.GC.30)

  • Smithit: AgAsS2

Trechmannit-Typ: (Strunz: 2.GC.35)

  • Trechmannit: AgAsS2

Emplectit-Serie: (Strunz: 2.HA.05)

Weissbergit-Homeotype:

Ternäre Sulfosalze (M1+M22+PnS3)

Freieslebenit-Familie

  • Freieslebenit: AgPbSbS3 (Strunz: 2.JB.15)
  • Marrit: AgPbAsS3 (Strunz: 2.JB.15)
  • Diaphorit: Ag3Pb2Sb3S3 (Strunz: 2.JB.5)
  • Quadratit: Ag(Cd,Pb)(As,Sb)S3 (Strunz: 2.GC.25)
  • Schapbachit: Ag0,4Pb0,2Bi0,4S3 (Strunz: 2.CD.10)

Bournonit-Serie: (Strunz: 2.GA.50)

Mückeit-Serie: (Strunz: 2.GA.25)

  • Mückeit: CuNiBiS3
  • Lapieit: CuNiSbS3
  • Lisiguangit: CuPtBiS3
  • Malyshevit: CuPdBiS3

Christit-Typ: (Strunz: 2.HD.15)

Quaternäre Sulfosalze (M1+M22+M33+Pn2S5)

Hatchit-Isotype: (Strunz: 2.GC.05)

  • Hatchit: AgTlPbAs2S5
  • Wallisit: CuTlPbAs2S5

Sulfosalze mit tetradymitartigen Schichtstrukturen

Aleksit-Serie Pb(n−1)Bi2Chn+2: (Strunz: 2.DC.05)

  • Kochkarit: PbBi4Te6
  • Poubait: PbBi2(Se,Te,S) 4
  • Rucklidgeit: PbBi2Te4
  • Aleksit: PbBi2S2Te2
  • Saddlebackit: Pb2Bi2Te2S3

Komplexe Strukturvariante:: (Strunz: 2.DC.05)

  • Babkinit: Pb2Bi2(Se,S) 3

Kompositstrukturen mit alternierenden pseudohexagonalen und PbS/SnS-artigen Schichten

Kommensurable Strukturen

Nagyaite-Serie: (Strunz: 2.HB.20)

  • Buckhornit: (Pb2BiS3)(AuTe2)
  • Nagyágit: [Pb3(Pb,Sb) 3S6](Au,Te) 3

Verwandte Struktur:

  • Museumit: [Pb2(Pb,Sb) 2S8](Te,Au) 2 (Strunz: 2.HB.20)
  • Berryit: Cu3Ag2Pb3Bi7S16 (Strunz: 2.HB.05)

vorläufig zugeordnet

  • Watkinsonit: Cu2PbBi4(Se,S) 8 (Strunz: 2.HB.20)

Inkommensurable Strukturen

Kylindrit-Serie: (Strunz: 2.HF.25)

Franckeit-Typ:: (Strunz: 2.HF.25)

  • Coirait: (Pb,Sn) 12,5As3Sn5FeS28
  • Franckeit: ~Fe(Pb,Sn2+)6Sn4+Sb2S14

Lengenbachit-Typ: (Strunz: 2.HF.30)

Cannizzarit-Typ: (Strunz: 2.JB.20)

  • Cannizzarit: ~Pb8Bi10S23
  • Witteit: ~Pb8Bi10(S,Se)23

Kommensurable Kompositstrukturen abgeleitet vom Cannizzarit

Cannizzarit Plesiontye

Strukturen mit stufigen Schichten: (Strunz: 2.JB.25)

  • Junoit: Cu2Pb3Bi8(S,Se) 16
  • Feldbertalit: Cu2Pb6Bi8S19
  • Nordströmit: CuPb3Bi7(Se,S) 14
  • Proudit: Cu2Pb16Bi20(S,Se) 47

Strukturen mit gescherten, schachbrettartigen Schichten: (Strunz: 2.JB.45)

  • Galenobismutit: PbBi2S4
  • Ángelait: Cu2AgPbBiS4
  • Nuffieldit: Cu1,4Pb2,4Bi2,4Sb0,2S7 (Strunz: 2.HF.05)
  • Weibullit: Ag0,33Pb5,33Bi8,33(S,Se) 18

Cannizariteabwandlungen mit Wabenstrukturen

  • Neyit: Cu6Ag2Pb25Bi26S68 (Strunz: 2.JB.50)
  • Rouxelit: Cu2HgPb22S64(O,S) 2 (Strunz: 2.HF.35)

Lillianite Serie

Alle Minerale dieser Familie gehören zu einer homologen Serie. Ihre Struktur basiert auf PbS-artigen Schichten unterschiedlicher Dicke. Angegeben wird die Schichtdicke in der Anzahl N von Oktaedern in der Notation NL oder N1,N2L bei verschiedenen Schichten unterschiedlicher Dicke.

Lillianit homeotype (4L): (Strunz: 2.JB.40)

Bi-reich

  • Lillianit: AgxPb3–2xSb2+xS6
  • Gustavit: AgPbBi3S6

Sb-reich – Andorit-Serie:

Die Andorit-Serie umfasst orthorhombische und pseudoorthorhombische Sulfosalz-Minerale, deren Zusammensetzung ausgedrückt werden kann mit der Formel n * (PbAgMn)2+xSb3-xS6.[6]

  • Ramdohrit: (PbAgMn)4,5Sb5,5S12 mit x=0,25 und n=2[6] ((Cd, Mn, Fe)Ag5,5Pb12Sb21,5S48)
  • Fizélyit: (PbAgMn)4,75Sb5,25S12 mit x=0,375 und n=2[6] (Ag5Pb14Sb21S48)
  • Uchucchacuait: (PbAgMn)5Sb5S12 mit x=0,5 und n=2[6] (MnAgPb3Sb5S12)
  • Quatrandorit (ehemals Andorit IV): (PbAgMn)8Sb12S24 mit x=0 und n=4[6] (Ag15Pb18Sb47S96)
  • Senandorit (ehemals Andorit VI): (PbAgMn)12Sb18S36 mit x=0 und n=6[6] (AgPbSb3S6)
  • Roshchinit: (Ab, Cu)19Pb10Sb51S96

Lilianit dimorph (4,4L):

  • Xilingolith: Pb3Bi2S6

(4,7L) homologe:

  • Vikingit: Ag5Pb8Bi13S30

(4,8L) homologe:

Heyrovskýit-Serie: (7L): (Strunz: 2.JB.40)

Strukturell verwandt (5,9L):

Ouaryit-Paar(11,11L): (Strunz: 2.JB.40)

  • Ourayit (B-zentriert): Ag3Pb4Bi5S13
  • Ourayit-P: ~Ag3,6Pb2,8Bi5,6S13

Verwandte Struktur? (Strunz: 2.LB.10)

  • Ustarasit: Pb(Bi, Sb)6S10

Pavonit Serie (Strunz: 2.JA.05)

  • Grumiplucit: HgBi2S4
  • Kudriavit: (Cd, Pb)Bi2S4
  • Makovickyit: Cu1,12Ag0,81Pb0,27Bi5,35S9
  • Cupromakovickyit: Cu4AgPb2Bi9S18
  • Pavonit: AgBi3S5
  • Cupropavonit: Cu0,9Ag0,5Pb0,6Bi2,5S5
  • Benjaminit: Ag3Bi7S12
  • Mummeit: Cu0,58Ag3,11Pb1,10Bi6,65S13
  • Borodaevit: Ag4,83Fe0,21Pb0,45(Bi;Sb) 8,84S13
  • Cupromakopavonit: Cu8Ag3Pb4Bi19S38

Abgeleitete Strukturen

  • Mozgovait: PbBi4(S, Se) 7
  • Livingstonit: HgSb4S6(S2) (Strunz: 2.HA.15)

Cuprobismutit Serie (Strunz: 2.JA.10)

  • Kupčíkit: Cu3,4Fe0,6Bi5S10
  • Hodrušit: Cu8Bi12S22
  • Cuprobismutit: Cu8AgBi13S24

Verwandt

  • Pizgrischit: (Cu,Fe)Cu14PbBi17S34
  • Paděrait: Cu7[(Cu,Ag) 0,33Pb1,33Bi11,33]S22

Meneghinit Serie (Strunz: 2.HB.05)

  • Meneghinit: CuPb13Sb7S24
  • Jaskólskiit: CuxPb2−x(Sb, Bi) 2−xS5 mit x ~0,2

Jordanit Serie

Jordanit-Typ: (Strunz: 2.JB.30)

Kirkiit-Typ: (Strunz: 2.JB.30)

  • Kirkiit: Pb10Bi3As3S19

Verwandte Struktur (?): (Strunz: 2.LB.15)

  • Tsugaruit: Pb4As2S7

PbS-Strukturtyp (hexagonal) (Strunz: 2.JB.55)

  • Gratonit: Pb9As4S15

Plagionit Serie (Strunz: 2.HC.10)

Sartorit Serie (Strunz: 2.HC.05)

Sartorit-Typ

  • Sartorit: PbAs2S4
  • Sartorit-9c: Tl1,5Pb8As17,5S35
  • Twinnit: Pb(Sb0,63As0,37)2S4
  • Guettardit: Pb8(Sb0,56As0,44)16S32

Baumhauerit-Typ

  • Liveingit: Pb20As24S56

Dufrénoysit-Typ

Homologe mit Stapelfolgen hoher Periodizität

  • Marumoit: Pb32As40S92
  • Rathit-IV: Formel unbekannt, möglicherweise Pb19As24S55

Von Dufrenoysit abgeleitete Strukturen

Pierrotit-Typ

  • Pierrotit: Tl2(Sb,As) 10S16 (monoklien)
  • Parapierrotit: TlSb5S8 (orthorhombisch)

Unklassifiziert

Boulangerit Familie (stab- und schichtförmige Baueinheiten)

  • Cosalit: Pb2Bi2S5 (Strunz: 2.JB.10)
  • Falkmanit: Pb3Sb2S6 (Strunz: 2.HC.15)
  • Boulangerit: Pb5Sb4S11 (Strunz: 2.HC.15)
  • Plumosit: Pb2Sb2S5 (Strunz: 2.HC.15)
  • Moëloit: Pb6Sb6S14(S3) (Strunz: 2.HC.25)
  • Dadsonit: Pb23Sb25S60Cl (Strunz: 2.HC.30)
  • Robinsonit: Pb4Sb6S13 (Strunz: 2.HC.20)

Jamesonit-Serie (Strunz: 2.HB.15)

Berthierit-Serie (Strunz: 2.HA.20)

  • Berthierit: FeSb2S4
  • Garavellit: FeSbBiS4
  • Klerit: MnSb2S4

Zinkenit-Familie

Zinkenit-Serie

  • Zinkenit: Pb9Sb22S42 (Strunz: 2.JB.35)
  • Pilait: Pb9Sb10S23ClO0,5 (Strunz: 2.JB.35)
  • Scainiit: Pb14Sb30S54O5 (Strunz: 2.JB.35)
  • Marrucciit: Hg3Pb16Sb18S46 (Strunz: 2.JB.60)
  • Pellouxit: (Cu,Ag)2Pb21Sb23S55ClO (Strunz: 2.JB.35)
  • Vurroit: Sn2Pb20(Bi,As)22S54Cl6 (Strunz: 2.LB.45)
  • Owyheeit: Ag3Pb10Sb11S28 (Strunz: 2.HC.35)

Verwandte Strukturen mit schachbrettartigen Struktureinheiten

Kobellit-Serie (Strunz: 2.HB.10)

  • Kobellit: (Cu.Fe)2Pb11(Bi,Sb)15S35
  • Tintianit: Cu2Pb10Sb16S35

Geissenit-Typ: (Strunz: 2.HB.10)

  • Giessenit: (Cu,Fe)2Pb26,4(Bi,Sb)19,6S57 (monoklin)
  • Izoklakeit: (Cu,Fe)2Pb26,4(Sb,Bi)19,6S57 (orthorhombisch)

Verwandte Struktur: (Strunz: 2.HB.10)

  • Eclarit: (Cu,Fe)Pb9Bi12S28

Strukturelle Verwandtschaft unklar: (Strunz: 2.HB.10)

  • Zoubekit: AgPb4Sb4S10

Aikinit-Bismuthinit-Serie (Strunz: 2.HB.05)

  • Aikinit: CuPbBiS3
  • Friedrichit: Cu5Pb5Bi7S18
  • Hammarit: Cu2Pb2Bi4S9
  • Emilit: Cu10,7Pb10,7Bi21,3S48
  • Lindströmit: Cu3Pb3Bi7S15
  • Krupkait: CuPbBi3S6
  • Paarit: Cu1,7Pb1,7Bi6.3S12
  • Salzburgit: Cu1,6Pb1,6Bi6,4S12
  • Gladit: CuPbBi5S9
  • Pekoit: CuPbBi11S18
  • Bismuthinit: Bi2S3 (Strunz: 2.DB.05)

Verwandte Sulfosalze mit unbekannter Struktur (Januar 2008) (Strunz: 2.LB.30)

  • Ardait: Pb17Sb15S35Cl9
  • Daliranit: PbHgAs2S6
  • Launayit: CuPb10(Sb,As)13S30
  • Madocit: Pb19(Sb,As)16S43
  • Playfairit: Pb16(Sb,As)19S44Cl
  • Sorbyit: CuPb9(Sb,As)11S26
  • Sterryit: (Ag,Cu)2Pb10(Sb,As)12S29

Hutchinsonit Serie

Hutchinsonit-Bernadit-Paar

  • Hutchinsonit: TlPbAs5S9 (Strunz: 2.HD.45)
  • Bernardit: TlAs5S8 (Strunz: 2.HD.50)

Ebenharterit-Jentschit-Paar

  • Edenharterit: TlPbAs3S6 (Strunz: 2.HD.35)
  • Jentschit: TlPbAs2SbS6 (Strunz: 2.HD.40)

Andere

  • Imhofit: Tl5,8As15,4S26 (Strunz: 2.HD.30)
  • Gillulyit: Tl2As7,5Sb0,3S13 (Strunz: 2.JC.10)

PbS-Urtyp

  • Gerstleyit: Na2(Sb,As) 8S13.2H2O (Strunz: 2.HE.05)

Rebulit-Paar

  • Rebulit: Tl5As8Sb5S22 (Strunz: 2.HD.25)
  • Jankovićit: Tl5Sb9(As,Sb) 4S22 (Strunz: 2.HD.20)

Sicherit Typ

  • Sicherit: Ag2Tl(As,Sb) 4S6 (Strunz: 2.HD.55)

Unklassifiziert

  • Erniggliit: SnTl2As2S6 (Strunz: 2.GA.45)
  • Vrbait: Hg3Tl4As8Sb3S20 (Strunz: 2.HF.20)
  • Simonit: HgTlAs3S6 (Strunz: 2.GC.20)
  • Vaughanit: HgTlSb4S7 (Strunz: 2.LA.20)
  • Gabrielit: Cu2AgTl2As3S7 (Strunz: 2.HD.60)

Cu(Ag)- reiche Sulfosalze

Wittichenit Typ (Strunz: 2.GA.20)

Tetraedrit Serie (Strunz: 2.GB.05)

  • Tetraedrit: Cu6[Cu4(Fe,Zn)2]Sb4S13
  • Tennantit: Cu6[Cu4(Fe,Zn)2]As4S13
  • Freibergit: Ag6[Cu4Fe2]Sb4S13-x
  • Argentotennantit: Ag6[Cu4(Fe,Zn)2]As4S13
  • Argentotetraedrit: Ag10(Fe,Zn)2Sb4S13
  • Goldfieldit: Cu10Te4S13
  • Hakit: Cu6[Cu4Hg2]Sb4S13
  • Giraudit: Cu6[Cu4(Fe,Zn)2]As4Se13

Verwandter Strukturtyp: (Strunz: 2.GB.05)

  • Galkhait: (Cs,Tl)(Hg,Cu,Zn,Tl)6(As,Sb)4S12

Nowackiit Serie (Strunz: 2.GA.30)

  • Nowackiit: Cu6Zn3As4S12
  • Aktashit: Cu6Hg3As4S12
  • Gruzdevit: Cu6Hg3Sb4S12

Verwandte Strukturen:

  • Sinnerit: Cu6 As4S9 (Strunz: 2.GC.10)
  • Watanabeit: Cu4(As,Sb)2S5 (Strunz: 2.GC.15)
  • Laffittit: AgHgAsS3 (Strunz: 2.GA.35)

Routhierit Typ (Struz: 2.GA.40)

  • Routhierit: CuHg2TlAs2S6
  • Stalderit: Cu(Zn,Fe,Hg)2TlAs2S6

Unklassifizierte Cu-Sulfosalze

  • Miharait: Cu4FePbBiS6 (Strunz: 2.LB.05)
  • Petrovicit: Cu3HgPbBiSe5 (Strunz: 2.LB.40)
  • Mazzettiit: Ag3HgPbSbTe5 (Strunz: 2.LB.40)
  • Chaméanit: (Cu,Fe)4As(Se,S)4 (Strunz: 2.LA.35)
  • Mgriit: (Cu,Fe) 3AsSe3 (Strunz: 2.LA.45)
  • Larosit: (Cu,Ag) 21PbBiS13 (Strunz: 2.LB.35)
  • Arcubisit: CuAg6BiS4 (Strunz: 2.LA.40)

Ag-reiche Sulfosalze

Samsonit Typ

Pyrargyrit Familie

  • Pyrargyrit: Ag3SbS3 (Strunz: 2.GA.05)
  • Proustit: Ag3AsS3 (Strunz: 2.GA.05)
  • Ellisit: Tl3AsS3 (Strunz: 2.JC.05)

Pyrostilpnit Typ (Strunz: 2.GA.10)

Polybasit Serie (Strunz: 2.GB.15)

  • Polybasit: Cu(Ag,Cu)6Ag9Sb2S11
  • Pearceit: Cu(Ag,Cu) 6Ag9As2S11
  • Seleopolybasit: Cu(Ag,Cu)6Ag9Sb2Se11

Stephanit Typ

  • Stephanit: Ag5SbS4 (Strunz: 2.GB.10)
  • Selenostephanit: Ag5Sb(Se,S)4 (Strunz: 2.GB.10)
  • Fettelit: Ag14HgAs5S20 (Strunz: 2.LA.30)

Unklassifizierte Ag-Sulfosalze

  • Benleonardit: Ag8(Sb,As)Te2S3 (Strunz: 2.LA.50)
  • Tsnigriit: Ag9Sb(S,Se)3Te3 (Strunz: 2.LA.55)
  • Dervillit: Ag2AsS2 (Strunz: 2.LA.10)

Oxysulfosalze

  • Sarabauit: Sb4S6 . CaSb6O10 (Strunz: 2.HE.1)
  • Cetineit: NaK5Sb14S3O18(H2O)6 (Strunz: 2.FD.15)
  • Ottensit: Na3(Sb2O3)3(SbS3). 3H2O (Strunz: 2.FD.15)

Subsulfosalze (?)

  • Tvalchrelidzeit: Hg3SbAsS3 (Strunz: 2.LA.05)
  • Criddleit: Ag2Au3TlSb10S10 (Strunz: 2.LA.25)
  • Jonassonit: Au(Bi,Pb) 5S4 (Strunz: 2.LA.65)

PGE Sulfosalze (?)

  • Borovskit: Pd3SbTe4 (Strunz: 2.LA.60)
  • Crerarit: (Pt,Pb)Bi3(S,Se)4-x (Strunz: 2.CD.10)

Thioarsenate

  • Billingsleyit: Ag7AsS6 (Strunz: 2.KB.05)
  • Enargit: Cu3AsS4 (Strunz: 2.KA.05)
  • Fangit: Tl3AsS4 (Strunz: 2.KA.15)
  • Luzonit: Cu3AsS4 (Strunz: 2.KA.10)

Thioantimonate

Tiostannate

  • Canfieldit: Ag8SnS4 (Strunz: 2.BA.35)
  • Černýit: Cu2CdSnS4 (Strunz: 2.CB.15)
  • Chatkalit: Cu6FeSn2S8 (Strunz: 2.CB.20)
  • Ferrokësterit: Cu2(Fe,Zn)SnS4 (Strunz: 2.CB.15)
  • Hocartit: Ag2FeSnS4 (Strunz: 2.CB.15)
  • Kësterit: Cu2(Zn,Fe)SnS4 (Strunz: 2.CB.15)
  • Kuramit: Cu3SnS4 (Strunz: 2.CB.15)
  • Mawsonit: Cu6Fe2SnS8 (Strunz: 2.CB.20)
  • Mohit: Cu2SnS3 (Strunz: 2.CB.15)
  • Petrukit: (Cu,Ag)2(Fe,Zn)(Sn,Id)S4 (Strunz: 2.KA.05)
  • Pirquitasit: Ag2ZnSnS4 (Strunz: 2.CB.15)
  • Stannit: Cu2FeSnS4 (Strunz: 2.CB.15)
  • Stannoidit: Cu8(Fe,Zn)3Sn2S12 (Strunz: 2.CB.15)
  • Velikit: Cu2HgSnS4 (Strunz: 2.CB.15)

Thioindate

Thiogermanate

Thiovanadate

Thiomolybdat / Stannat

  • Hemusit: Cu6SnMoS8 (Strunz: 2.CB.35)

Thiowolframat / Stannat

Thiomolybdat / Germanat

  • Maikainit: Cu20(Fe,Cu)6Mo2Ge6S32 (Strunz: 2.CB.30)

Thiowolframat / Germanat

Andere gemischte Arten

Selenioantimonat

Literatur

  • N. N. Mozgova: Sulfosalt mineralogy today. (PDF; 61 MB) MSF Mini-Symposium Modern Approaches to Ore and Environmental Mineralogy, 2000, Espoo Finland, Extended Abstracts, S. 66.
  • Yves Moëlo, Emil Makovicky, Nadejda N. Mozgova, John L. Jambor, Nigel Cook, Allan Pring, Werner Paar, Ernest H. Nickel, Stephan Graeser, Sven Karup-Møller, Tonči Balic-Žunic, William G. Mumme, Filippo Vurro, Dan Topa, Luca Bindi, Klaus Bente, Masaaki Shimizu: Sulfosalt systematics: a review. Report of the sulfosalt sub-committee of the IMA Commission on Ore Mineralogy. In: European Journal of Mineralogy. Band 20, Nr. 1, 2008, S. 7–62, doi:10.1127/0935-1221/2008/0020-1778 (PDF).
  • Hugo Strunz, Ernest H. Nickel: Strunz Mineralogical Tables. 9. Auflage. E. Schweizerbart’sche Verlagsbuchhandlung (Nägele u. Obermiller), Stuttgart 2001, ISBN 3-510-65188-X, S. 56.
  • Massimo Nespolo, Tohru Ozawa, Yusuke Kawasaki, Kazumasa Sugiyama: Structural relations and pseudosymmetries in the andorite homologous series. In: Journal of Mineralogical and Petrological Sciences. Band 107, Nr. 6, 2012, S. 226–243, doi:10.2465/jmps.120730 (PDF).

Einzelnachweise

  1. Strunz Mineralogical Tables, 9. Auflage
  2. N. Makovicky. In: Jb. Min., Abh. 1989, S. 269–297 etc.
  3. Schweiz. Min. Petr. Mitt., 1969, S. 109–156
  4. Schweiz. Min. Petr. Mitt., 1976, S. 195–217
  5. Sufosalt systematics: a review.
  6. Nespolo et al.: Structural relations and pseudosymmetries in the andorite homologous series. 2012
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.