Sedenion
Die Sedenionen (Symbol ) sind 16-dimensionale hyperkomplexe Zahlen. Sie entstehen durch die Anwendung des Verdopplungsverfahrens aus den Oktonionen.
Die Multiplikation der Sedenionen ist weder kommutativ noch alternativ (und damit auch nicht assoziativ). Sie ist nur noch potenz-assoziativ und flexibel. Weiterhin erfüllen die Sedenionen die Jordan-Identität und bilden daher eine nichtkommutative Jordan-Algebra. Sedenionen besitzen Nullteiler.
Jedes Sedenion ist eine reelle Linearkombination der Einheiten , wobei ist:
Multiplikation
Eine mögliche Multiplikationstafel der Einheiten ist:
⋅ | 1 | e1 | e2 | e3 | e4 | e5 | e6 | e7 | e8 | e9 | e10 | e11 | e12 | e13 | e14 | e15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | e1 | e2 | e3 | e4 | e5 | e6 | e7 | e8 | e9 | e10 | e11 | e12 | e13 | e14 | e15 |
e1 | e1 | −1 | e3 | −e2 | e5 | −e4 | −e7 | e6 | e9 | −e8 | −e11 | e10 | −e13 | e12 | e15 | −e14 |
e2 | e2 | −e3 | −1 | e1 | e6 | e7 | −e4 | −e5 | e10 | e11 | −e8 | −e9 | −e14 | −e15 | e12 | e13 |
e3 | e3 | e2 | −e1 | −1 | e7 | −e6 | e5 | −e4 | e11 | −e10 | e9 | −e8 | −e15 | e14 | −e13 | e12 |
e4 | e4 | −e5 | −e6 | −e7 | −1 | e1 | e2 | e3 | e12 | e13 | e14 | e15 | −e8 | −e9 | −e10 | −e11 |
e5 | e5 | e4 | −e7 | e6 | −e1 | −1 | −e3 | e2 | e13 | −e12 | e15 | −e14 | e9 | −e8 | e11 | −e10 |
e6 | e6 | e7 | e4 | −e5 | −e2 | e3 | −1 | −e1 | e14 | −e15 | −e12 | e13 | e10 | −e11 | −e8 | e9 |
e7 | e7 | −e6 | e5 | e4 | −e3 | −e2 | e1 | −1 | e15 | e14 | −e13 | −e12 | e11 | e10 | −e9 | −e8 |
e8 | e8 | −e9 | −e10 | −e11 | −e12 | −e13 | −e14 | −e15 | −1 | e1 | e2 | e3 | e4 | e5 | e6 | e7 |
e9 | e9 | e8 | −e11 | e10 | −e13 | e12 | e15 | −e14 | −e1 | −1 | −e3 | e2 | −e5 | e4 | e7 | −e6 |
e10 | e10 | e11 | e8 | −e9 | −e14 | −e15 | e12 | e13 | −e2 | e3 | −1 | −e1 | −e6 | −e7 | e4 | e5 |
e11 | e11 | −e10 | e9 | e8 | −e15 | e14 | −e13 | e12 | −e3 | −e2 | e1 | −1 | −e7 | e6 | −e5 | e4 |
e12 | e12 | e13 | e14 | e15 | e8 | −e9 | −e10 | −e11 | −e4 | e5 | e6 | e7 | −1 | −e1 | −e2 | −e3 |
e13 | e13 | −e12 | e15 | −e14 | e9 | e8 | e11 | −e10 | −e5 | −e4 | e7 | −e6 | e1 | −1 | e3 | −e2 |
e14 | e14 | −e15 | −e12 | e13 | e10 | −e11 | e8 | e9 | −e6 | −e7 | −e4 | e5 | e2 | −e3 | −1 | e1 |
e15 | e15 | e14 | −e13 | −e12 | e11 | e10 | −e9 | e8 | −e7 | e6 | −e5 | −e4 | e3 | e2 | −e1 | −1 |
Dabei ist die linke Spalte als erster bzw. linker Faktor zu lesen, die obere Zeile als zweiter bzw. rechter Faktor:
- , aber
Siehe auch Antikommutativität.
Es gilt
- .
Nullteiler
Aus der Tabelle ist zu entnehmen, dass die Sedenionen Nullteiler besitzen. Das bedeutet, es gibt Sedenionen, die selbst nicht null sind, aber bei der Multiplikation mit einem anderen von null verschiedenen Sedenion trotzdem null ergeben:
Der Raum der Nullteiler mit Norm 1 ist homöomorph zur kompakten Form der exzeptionellen Lie-Gruppe G2.[1]
Einzelnachweise
- R. Guillermo Moreno (1997): The zero divisors of the Cayley-Dickson algebras over the real numbers, arxiv:q-alg/9710013.