Satz von Tutte

Der Satz von Tutte (nach William Thomas Tutte)[1] ist ein mathematischer Satz aus der Graphentheorie. Er lautet:

Ein Graph G=(V,E) hat genau dann ein perfektes Matching, wenn für jede Teilmenge S der Knotenmenge V die Anzahl der Zusammenhangskomponenten ungerader Mächtigkeit von G-S höchstens gleich |S|, der Anzahl der Knoten in S, ist.

G-S bezeichnet dabei den Graphen, der entsteht, wenn man die Knoten von S und ihre inzidenten Kanten aus G löscht. Bezeichnet man mit q(G) die Anzahl der Zusammenhangskomponenten mit ungerader Anzahl Knoten in einem Graphen G=(V,E), so lässt sich die zweite Bedingung kurz schreiben als |S| ≥ q(G-S) für alle Teilmengen S von V.

Ein einfacherer Beweis als der von Tutte stammt von Tibor Gallai (1963).

Literatur

  • Lutz Volkmann: Fundamente der Graphentheorie. Springer, (Wien) 1996, ISBN 3-211-82774-9, S. 137, Satz 7.2

Einzelnachweise

  1. Tutte, The factorization of locally finite graphs, Canadian Journal of Mathematics, Band 2, 1950, S. 44–49.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.