Satz von Poynting

Der Satz von Poynting (auch Poynting-Theorem genannt) beschreibt die Energiebilanz in der Elektrodynamik. Damit wird der Energieerhaltungssatz auf elektromagnetische Felder verallgemeinert. Seine Formulierung wird dem britischen Physiker John Henry Poynting zugeschrieben. Stark vereinfacht trägt er in sich die Aussage, dass ein elektromagnetisches Feld Arbeit verrichten kann, wenn es dabei „schwächer“ wird. Mathematisch kann er, wie auch die Maxwellschen Gleichungen, sowohl in einer differenziellen als auch in einer integralen Schreibweise angegeben werden.

Formulierung

In der differentiellen Form lautet der Satz von Poynting

.

Dabei bezeichnen:

  • die Energiedichte des elektromagnetischen Feldes,
  • den Poynting-Vektor,
  • die elektrische Stromdichte,
  • die elektrische beziehungsweise magnetische Feldstärke und
  • die elektrische beziehungsweise magnetische Flussdichte.

In der integralen Form lautet er, nachdem die Volumentintegration über die Divergenz des Poynting-Vektors mithilfe des Satzes von Gauß in ein Oberflächenintegral überführt wurde:

Herleitung

Ausgangspunkt ist die Energiedichte des elektromagnetischen Feldes

.

Im Folgenden sei ein lineares und isotropes Medium angenommen, sodass die Zusammenhänge und gelten. Dann vereinfacht sich die Energiedichte zu

,

wobei die Lichtgeschwindigkeit im Medium ist. Die zeitliche Änderung der Energiedichte ist somit

.

Nach den Maxwell-Gleichungen gilt (Durchflutungsgesetz) und (Induktionsgesetz). In die obige Gleichung eingesetzt ergibt sich

und mithilfe der Vektoridentität folgt

.

Durch und der Definition des Poynting-Vektors folgt der Satz von Poynting.

Interpretation

Der Satz von Poynting besagt, dass die Änderung der Energie in elektromagnetischen Feldern in einem Volumen , , auf zwei Arten geschehen kann: zum einen durch einen Energiestrom über die Grenzen dieses Volumens hinweg, was durch den Divergenz- beziehungsweise Flächenintegral-Term ausgedrückt wird; zum anderen durch das Verrichten von Arbeit, ausgedrückt durch den Term . Letzterer Beitrag wird auch Joulesche Wärme genannt. Dieser Term kann mithilfe des Leistungssatzes wie folgt umformuliert werden:

.

Hierbei wurde die Stromdichte als Produkt der Ladungsdichte und der Geschwindigkeit ausgedrückt, die Ladungsdichte zur Gesamtladung aufintegriert, das Coulombsche Gesetz angewandt, um die Kraft auf eine Ladung zu bestimmen, und schließlich der Leistungssatz angewandt, der Kraft und Geschwindigkeit mit der Leistung verknüpft.

Eindeutigkeit des Poynting-Vektors

Da nur die Divergenz von relevant ist, könnte prinzipiell auch die Rotation einer beliebigen Funktion zu ihm hinzugefügt werden, da sie unter der Einwirkung der Divergenz verschwindet. Es gibt also formal unendlich viele vektorwertige Funktionen , die den Satz von Poynting erfüllen, aber nur lässt sich aus den Maxwell-Gleichungen gewinnen und ist damit physikalisch sinnvoll. Eine physikalische Interpretation eines so modifizierten als Leistungsfluss ist dann allerdings nicht mehr möglich.

Beispiel: Ohmscher Widerstand

Betrachtet man einen zylindrischen Leiter mit Radius und Länge , der vom zeitlich konstanten Strom durchflossen wird, wobei über die Länge des Leiters die Spannung proportional zur Länge abfällt. Der Leiter ist also ein Ohmscher Widerstand. Die Oberfläche, auf der der Poynting-Vektor, also die elektrische und magnetische Feldstärke betrachtet wird, ist die Mantelfläche des Zylinders.

Für den Betrag der elektrischen Feldstärke kann näherungsweise wie bei einem Plattenkondensator verwendet werden.

Die magnetische Feldstärke auf der Mantelfläche ist die eines stromdurchflossenen Leiters, .

Die Orientierung der elektrischen Feldstärke folgt der Länge des Zylinders, die magnetische Feldstärke dem Umfang. Sie stehen also immer senkrecht aufeinander und liegen in der betrachteten Fläche.

Der Betrag des Poynting-Vektors lautet

.

Die Richtung des Vektors zeigt in den Leiter hinein.

Integriert man den Poynting-Vektor über die Mantelfläche, erhält man die umgesetzte Leistung:

.

Das negative Vorzeichen trägt der Orientierung einer geschlossenen Fläche Rechnung, die immer nach außen ist.

Die gleichen Betrachtungen kann man anhand einer Batterie durchführen, mit einem Ergebnis, das sich nur im Vorzeichen der Leistung unterscheidet. Hieran kann man also den Energiestrom für einen einfachen Stromkreis aus Widerstand und Batterie erklären. Die Batterie gibt die in ihr gespeicherte chemische Energie in alle Raumrichtungen in die entstehenden elektrischen und magnetischen Felder ab (nur nicht in die stromführenden Leitungen) und der Widerstand nimmt sie gleichsam aus allen Richtungen auf und setzt diese dann z. B. in thermische Energie um. Eine Batterie ist also eine Quelle elektrischer Energie (die in den Feldern gespeichert ist), der Widerstand eine Senke.

Siehe auch

Literatur

  • John David Jackson: Klassische Elektrodynamik. 4., überarbeitete Auflage. de Gruyter, Berlin 2006, ISBN 3-11-018970-4
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.