Satz von Gelfand-Neumark

Die Gelfand-Neumark-Sätze (nach Israel Gelfand und Mark Neumark) und die GNS-Konstruktion bilden die Ausgangspunkte der mathematischen Theorie der C*-Algebren. Sie verbinden abstrakt definierte C*-Algebren mit konkreten Algebren von Funktionen und Operatoren.

Die ersten Beispiele von C*-Algebren, die man direkt nach der Definition angeben kann, sind die Algebra der stetigen Funktionen auf einem lokalkompakten Hausdorff-Raum X, die im Unendlichen verschwinden (siehe hierzu C0-Funktion), und die Unter-C*-Algebren von , wobei die Algebra der beschränkten, linearen Operatoren auf einem Hilbertraum H ist.

Die Gelfand-Neumark-Sätze zeigen, dass dies bis auf isometrische *-Isomorphie bereits alle möglichen C*-Algebren sind. Diese Resultate sind erstaunlich, denn in der Definition der C*-Algebren ist weder von lokalkompakten Hausdorff-Räumen noch von Hilberträumen die Rede.

Satz von Gelfand-Neumark, kommutativer Fall

Ist A eine kommutative C*-Algebra, so gibt es einen lokalkompakten Hausdorff-Raum X und einen isometrischen *-Isomorphismus zwischen A und .

Konstruktion des lokalkompakten Hausdorffraums

X ist die Menge aller von der Nullabbildung verschiedenen *-Homomorphismen . Zu jedem ist durch eine Abbildung definiert. Schließlich kann man beweisen, dass die Topologie der punktweisen Konvergenz X zu einem lokalkompakten Hausdorff-Raum macht und dass ein isometrischer *-Isomorphismus zwischen A und ist.

Bemerkungen

Nach diesem Satz kann ein Element einer kommutativen C*-Algebra wie eine stetige Funktion behandelt werden, was sich zum sogenannten stetigen Funktionalkalkül ausbauen lässt. So ist z. B. das Spektrum eines Elementes nichts weiter als der Abschluss des Bildes der zugehörigen stetigen Funktion.

Dieser Satz eröffnet ein sehr fruchtbares Zusammenspiel zwischen algebraischen Eigenschaften von C*-Algebren und topologischen Eigenschaften lokalkompakter Räume. Ist , so hat man neben vielen anderen folgende Entsprechungen:

Topologische Begriffsbildungen werden in algebraische Eigenschaften kommutativer C*-Algebren übersetzt und dann auf nicht-kommutative C*-Algebren verallgemeinert; das ist häufig der Ausgangspunkt weiterer Theorien. Aus diesem Grunde bezeichnet man die Theorie der C*-Algebren auch als nicht-kommutative Topologie.

Satz von Gelfand-Neumark, allgemeiner Fall

Ist A eine C*-Algebra, so gibt es einen Hilbert-Raum H, so dass A isometrisch *-isomorph zu einer Unter-C*-Algebra von L(H) ist.

Konstruktion des Hilbertraums

Sei ein stetiges lineares Funktional mit und für alle . Solche Funktionale nennt man auch Zustände von A. Zum Zustand setze . Dann definiert die Formel ein Skalarprodukt auf dem Quotientenraum . Die Vervollständigung bzgl. dieses Skalarproduktes ist ein Hilbertraum . Für jedes lässt sich die Abbildung zu einem stetigen linearen Operator auf fortsetzen. Dann zeigt man, dass die so erklärte Abbildung ein *-Homomorphismus ist. Schließlich konstruiert man aus der Gesamtheit der so gewonnenen Hilberträume einen Hilbertraum der gewünschten Art.

Bemerkungen

Ein Element einer abstrakt definierten C*-Algebra kann also wie ein beschränkter linearer Operator auf einem Hilbertraum behandelt werden.

Die oben beschriebene Konstruktion von aus f heißt die GNS-Konstruktion, wobei GNS für Gelfand, Neumark und Segal steht.

Man nennt *-Homomorphismen der Art auch Darstellungen von A auf H. Nach obigem Satz hat jede C*-Algebra eine treue (d. h. injektive) Darstellung auf einem Hilbertraum. Eine Darstellung heißt topologisch irreduzibel, wenn es keinen echten von 0 verschiedenen abgeschlossenen Unterraum U von H gibt, für den für alle gilt.

Satz von Segal

Ist A eine C*-Algebra, so ist der Zustandsraum S(A) konvex und ist genau dann ein Extremalpunkt, wenn die Darstellung topologisch irreduzibel ist.

Jede irreduzible Darstellung von A ist von der Form für einen extremalen Zustand f von A.

Weitere Bemerkungen

Auf dieser Grundlage wurde eine sehr weit reichende Darstellungstheorie für C*-Algebren entwickelt. C*-Algebren lassen sich durch die Bilder ihrer irreduziblen Darstellungen weiter klassifizieren. So heißt eine C*-Algebra liminal, wenn das Bild einer jeden irreduziblen Darstellung mit der Algebra der kompakten Operatoren zusammenfällt. Eine C*-Algebra heißt postliminal, wenn das Bild einer jeden irreduziblen Darstellung die Algebra der kompakten Operatoren enthält.

Literatur

  • Jacques Dixmier: Les C*-algèbres et leurs représentations. 2. édition. Gauthier-Villars, Paris 1969 (Cahiers Scientifiques 29, ISSN 0750-2265).
  • I. M. Gelfand, M. A. Neumark: On the embedding of normed rings into the ring of operators in Hilbert space. In: Matematiceskij sbornik. = Recueil mathématique. 54 = NS 12, 1943, ISSN 0368-8666, S. 197–213, online (PDF; 1,88 MB).
  • Richard V. Kadison, John R. Ringrose: Fundamentals of the Theory of Operator Algebras. Band 2: Advanced Theory. Academic Press, New York NY 1986, ISBN 0-12-393350-1 (Pure and Applied Mathematics 100, 2).
  • I. E. Segal: Irreducible Representations of Operator Algebras. In: Bulletin of the American Mathematical Society. 53, 1947, ISSN 0002-9904, S. 73–88.
  • Dirk Werner: Funktionalanalysis. 5. erweiterte Auflage. Springer, Berlin u. a. 2005, ISBN 3-540-21381-3, S. 466ff. (Springer Lehrbuch).

Einzelnachweise

  1. Chun-Yen Chou: Notes on the separability of C*-algebras, Taiwanese Journal of Mathematics, Band 16 (2), 2012, Seiten 555–559
  2. Gert K. Pedersen: C*-Algebras and Their Automorphism Groups, Academic Press Inc. (1979), ISBN 0-1254-9450-5, Satz 3.10.5
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.