Reißlänge
Die Reißlänge ist eine charakteristische Materialeigenschaft. Es handelt sich dabei um diejenige Länge, bei der ein frei hängender Querschnitt eines Werkstoffs (zum Beispiel ein Draht) durch seine eigene Gewichtskraft an der Befestigung abreißt.
Berechnung
Die Reißlänge kann aus der im Zugversuch gemessenen Festigkeit und der Dichte berechnet werden. Demnach versagt der Werkstoff, wenn die Belastung durch die Gewichtskraft gleich der Kraft ist, die der Werkstoff aufnehmen kann. Aus diesem Kräftegleichgewicht
ergibt sich durch Auflösen nach die Reißlänge zu
Sie ist definiert als das Verhältnis von Zugfestigkeit zum Produkt aus Dichte und Schwerebeschleunigung . Die Reißlänge wird meist in Kilometer angegeben. In der Textilindustrie ist die Bezeichnung Reißkilometer mit der Abkürzung Rkm üblich. Die Reißlänge ist unabhängig von Größe und Form der Querschnittsfläche, da nicht nur die Festigkeit linear mit der Querschnittsfläche wächst, sondern auch die Masse. Ein Rohr und ein Zylinder gleichen Materials haben, unabhängig von deren Querschnittsfläche, dieselbe Reißlänge.
Das Verhältnis von Zugfestigkeit zur Dichte wird als spezifische Festigkeit bezeichnet:
Bedeutung
Die Reißlänge ist dann eine hilfreiche Kennzahl, wenn die Masse eines Bauteils von Bedeutung ist. Wegen der Äquivalenz von träger und schwerer Masse ist das der Fall, wenn eine Belastung durch das Eigengewicht oder durch Trägheitskräfte verursacht wird.
Beispielsweise ist die Belastung eines Bilderhakens durch sein Eigengewicht auf Grund der Masse vernachlässigbar und bei gegebener Form die Festigkeit als Kenngröße ausreichend. Bei einer Brücke kann die Belastung durch das Eigengewicht die durch Nutzung verursachte Belastung übertreffen. Dann ist der Werkstoff höherer Reißlänge vorzuziehen.
Die Masse eines Bauteils induziert jedoch nicht nur durch die Gravitation eine Belastung, sondern möglicherweise auch durch ihre Trägheit. Deshalb gewinnt die Reißlänge dann an Bedeutung, wenn Bauteile durch starke Beschleunigung großen Trägheitskräften ausgesetzt sind. Dies ist bei Turbinenschaufeln oder Pleuelstangen der Fall.
In der Praxis tritt die Reißlänge bei der Werkstoffauswahl jedoch oft in den Hintergrund, da andere Kriterien wie Kosten, Verarbeitbarkeit oder Beständigkeit dominieren. Ist dann etwa der Werkstoff Stahl alternativlos, ist die Festigkeit entscheidend, da die Dichte von Stählen kaum variiert. Deshalb dient die Reißlänge eher dem technisch-physikalischen Verständnis als der konkreten Arbeit eines Konstrukteurs.
Eine vieldiskutierte Applikation für neue Materialien mit extremen Reißlängen ist der Weltraumfahrstuhl.
Beispiele
Material | Zugfestigkeit (MPa) | Dichte (g/cm³) | Spezifische Reißfestigkeit (kN·m/kg) | Reißlänge (km) | Quelle(n) |
---|---|---|---|---|---|
Beton | 5,2 | 2,40 | 4,35 | 0,44 | |
Gummi | 15 | 0,92 | 16,3 | 1,66 | |
Messing | 580 | 8,55 | 67,8 | 6,91 | [1] |
Polyamid (Nylon) | 78 | 1,13 | 69,0 | 7,04 | [2] |
Eichenholz (längs der Faser) | 60 | 0,69 | 86,95 | 8,86 | [3] |
Polypropylen | 80 | 0,90 | 88,88 | 9,06 | [4] |
Magnesium | 275 | 1,74 | 158 | 16,11 | [5] |
Aluminiumlegierung | 600 | 2,70 | 222 | 22,65 | [6] |
Stahl | 2.000 | 7,86 | 254 | 25,93 | [6] |
Titan | 1.300 | 4,51 | 288 | 29,38 | [6] |
Pianodraht, Federstahl | 2.300 | 7,86 | 292 | 29,82 | [7] |
Bainit | 2.500 | 7,87 | 321 | 32,4 | [8] |
Balsaholz (längs der Faser) | 73 | 0,14 | 521 | 53,2 | [9] |
Scifer steel wire (typisch 0,015–0,1 mm Dm.) | 4.000 bis 5.500 | 7,87 | 706 | 71,2 | [8][10] |
Kohlenstofffaserverstärkter Kunststoff (Gewebe 0°/90°) | 1.240 | 1,58 | 785 | 80 | [11] |
Siliciumcarbid | 3.440 | 3,16 | 1.088 | 110 | [12] |
Glasfaser (ohne Matrix) | 3.400 | 2,60 | 1.307 | 133 | [6] |
Basaltfaser | 4.840 | 2,70 | 1.790 | 182,7 | [13] |
1 μm Eisen-Whisker | 14.000 | 7,87 | 1.800 | 183 | [8] |
aromatische Polyester (Vectran) | 2.900 | 1,40 | 2.071 | 211 | [6] |
Kohlenstofffaser (ohne Matrix) | 4.300 | 1,75 | 2.457 | 250 | [6] |
Aramid (Kevlar) | 3.620 | 1,44 | 2.514 | 256 | [14] |
Polyethylen-Faser (Dyneema, Spectra; z. B. Drachenleine) | 3.510 | 0,97 | 3.619 | 369 | [15] |
Zylon | 5.800 | 1,54 | 3.766 | 384 | [16] |
Kohlenstoffnanoröhren | 63.000 | 0,037 bis 1,34 | 46.268 bis N/A | 4.716 bis N/A | [17][18] |
Graphen | 135.000 | 2,26 | 55.367 | 5.655 | |
Colossal carbon tube | 6.900 | 0,116 | 59.483 | 6.066 | [19] |
Rechenbeispiel:
Bsp. Holz mit Rm = 100 N/mm² und einer Dichte von 500 kg/m³ (Schwerebeschleunigung g ≈ 10 m/s²):
Weblinks
Einzelnachweise
- RoyMech: Copper Alloys
- Goodfellow: Polyamide – Nylon 6 (Memento des vom 9. Juni 2008 im Internet Archive) Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.
- Delft University of technology: Oak wood (Memento vom 9. Oktober 2007 im Internet Archive)
- Goodfellow: Polypropylene (Memento des vom 2. Juni 2008 im Internet Archive) Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.
- eFunda: Magnesium Alloys
- Vectran fiber: Tensile Properties (Memento des vom 30. Dezember 2013 im Internet Archive) Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.
- Archivierte Kopie (Memento des vom 12. Februar 2016 im Internet Archive) Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis. http://www.koch.ch, Bolzenschneider Zugfestigkeit Pianodraht 2300 N/mm2, abgerufen 12. Februar 2016.
- 52nd Hatfield Memorial Lecture: „Large Chunks of Very Strong Steel“ (Memento des vom 23. Dezember 2012 im Webarchiv archive.today) Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis. by H. K. D. H. Bhadeshia 2005
- MatWeb: Tropical Balsa Wood
- http://www.sheffield.ac.uk/polopoly_fs/1.395277!/file/52nd_shortpaper.pdf H. K. D. H. Bhadeshia: Bulk nanocrystalline steel, Hatfield Memorial Lecture, In: Ironmaking and Steelmaking, vol. 32, no. 5, 2005, S. 405–410. hier: S. 406, abgerufen 12. Februar 2016.
- McGRAW-HILL ENCYCLOPEDIA OF Science & Technology, 8. Auflage, 1997, Band 1, Seite 375
- Specialty Materials, Inc SCS Silicon Carbide Fibers (Memento des vom 4. April 2018 im Internet Archive) Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.
- albarrie.com: Basalt Continuous Fibers (Memento des vom 29. Dezember 2009 auf WebCite) Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.
- Network Group for Composites in Construction: Introduction to Fibre Reinforced Polymer Composites.
- Honeywell Advanced Fibers and Composites: Spectra Fiber.
- Toyobo Co.,Ltd.: ザイロン®(PBO 繊維)技術資料 (2005). (free download PDF) Archiviert vom am 26. April 2012; abgerufen am 16. Januar 2015. Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.
- Min-Feng Yu, O Lourie, MJ Dyer, K Moloni, TF Kelly, RS Ruoff: Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load. In: Science. 287. Jahrgang, Nr. 5453, 2000, S. 637–640, doi:10.1126/science.287.5453.637, PMID 10649994, bibcode:2000Sci...287..637Y.
- K.Hata: From Highly Efficient Impurity-Free CNT Synthesis to DWNT forests, CNTsolids and Super-Capacitors. (PDF; 3,0 MB) Abgerufen am 21. Mai 2011.
- Peng, H.; Chen, D.; et al., Huang J.Y. et al.: Strong and Ductile Colossal Carbon Tubes with Walls of Rectangular Macropores. In: Phys. Rev. Lett. 101. Jahrgang, Nr. 14, 2008, S. 145501, doi:10.1103/PhysRevLett.101.145501, PMID 18851539, bibcode:2008PhRvL.101n5501P.