Primzahlsatz
Der Primzahlsatz erlaubt eine Abschätzung der Verteilung der Primzahlen mittels Logarithmen. Der Zusammenhang zwischen Primzahlen und Logarithmen wurde bereits von dem 15-jährigen Carl Friedrich Gauß 1793 und unabhängig von ihm durch Adrien-Marie Legendre 1798 vermutet, aber erst 1896 unabhängig von Jacques Salomon Hadamard und Charles-Jean de La Vallée Poussin bewiesen.
Die Primzahlfunktion
Im Weiteren sei die Primzahlfunktion, die für beliebige reelle Zahlen definiert ist als die Anzahl der Primzahlen, die nicht größer als sind. Formal kann man schreiben:
Dabei bezeichnet das Symbol die Menge der Primzahlen, die Schreibweise steht für die Anzahl der Elemente der Menge
Der Primzahlsatz
Der Primzahlsatz besagt:
Nennt man zwei reelle Funktionen und asymptotisch äquivalent, wenn der Quotient für gegen 1 konvergiert, so kann man den Primzahlsatz auch so formulieren: Die Funktionen und sind asymptotisch äquivalent, geschrieben .
Der Primzahlsatz ist im Wesentlichen äquivalent dazu, dass die Riemannsche Zetafunktion keine Nullstellen mit hat.
Es gibt verschiedene analytische Beweise. Ein einfacher Beweis, der die Abschätzung der Zetafunktion im Unendlichen nach Hadamard und La Vallée Poussin vermeidet, wurde von Donald Newman gegeben.[1][2] Ein dritter Weg innerhalb der analytischen Zahlentheorie benutzt die Taubersätze von Wiener-Ikehara, vermeidet ebenfalls die Abschätzung im Unendlichen, benutzt aber tieferliegende Ergebnisse aus der Theorie der Fourier-Transformation. Es gibt auch Beweise ohne Verwendung komplexer Funktionentheorie („elementare“ Beweise nach Paul Erdős und Atle Selberg).
Stärkere Formen des Primzahlsatzes
Bessere Approximationen als liefert der Integrallogarithmus
Die Integraldarstellung für wird gewählt, weil die Stammfunktionen von nicht elementar sind.
Der Integrallogarithmus ist asymptotisch äquivalent zu also auch zu
Man kann zeigen:[3]
mit einer positiven Konstanten . Dabei ist ein Landau-Symbol, d. h., es gibt eine Konstante , sodass
für alle gilt. Die Verbesserung des Fehlerterms hängt davon ab zu zeigen, dass die Zetafunktion in immer größeren Bereichen im kritischen Streifen nullstellenfrei ist. Unter Annahme der Riemannschen Vermutung (nach der alle nicht-trivialen Nullstellen auf der Geraden liegen), und nur unter dieser, kann man die Fehlerabschätzung zu
verbessern (Helge von Koch 1901). Eine nicht-asymptotische Schranke fand Lowell Schoenfeld unter Annahme der Riemann-Vermutung:[4]
- .
Geschichte
Adrien-Marie Legendre veröffentlichte 1798 als erster in seiner Théorie des nombres (Abhandlung über Zahlentheorie) unabhängig von Gauß[5] den vermuteten Zusammenhang zwischen Primzahlen und Logarithmen. In der zweiten Auflage dieses Werks 1808 verbesserte er die Abschätzung von zu ungefähr gleich[6]
(wo dieser Wert 1,08366 verantwortlich für das Problem der Existenz der Legendre-Konstanten ist). Ein erster Schritt hin zu einem Beweis gelang Pafnuti Lwowitsch Tschebyschow, der 1851 die folgende schwächere Form des Primzahlsatzes zeigte:[7][8]
für alle hinreichend großen . Das heißt, dass die Anzahl der Primzahlen unter einer gegebenen Größe um nicht mehr als ungefähr 10 % nach oben oder unten von der logarithmischen Funktion abweicht.
Der englische Mathematiker James Joseph Sylvester, damals Professor an der amerikanischen Johns Hopkins University in Baltimore, verfeinerte 1892 Tschebyschows Methode und zeigte, dass für die Ungleichung bei hinreichend großem die untere Grenze 0,95695 und die obere Grenze 1,04423 genügt,[9] die Abweichung also maximal nur mehr ungefähr 5 % beträgt.
In seiner berühmten Arbeit Über die Anzahl der Primzahlen unter einer gegebenen Größe (1859) hat Bernhard Riemann den Zusammenhang zwischen der Verteilung der Primzahlen und den Eigenschaften der Riemannschen Zetafunktion gezeigt.[10] Der deutsche Mathematiker Hans von Mangoldt bewies 1895 das Hauptresultat der Riemannschen Arbeit, dass der Primzahlsatz dem Satz äquivalent ist, dass die Riemannsche Zetafunktion keine Nullstellen mit Realteil 1 hat.[11] Sowohl Hadamard als auch de la Vallée Poussin haben 1896 die Nichtexistenz solcher Nullstellen bewiesen.[12][13][14] Ihre Beweise des Primzahlsatzes sind also nicht „elementar“, sondern verwenden funktionentheoretische Methoden. Lange Jahre galt ein elementarer Beweis des Primzahlsatzes für unmöglich, was 1949 durch die von Atle Selberg und Paul Erdős gefundenen Beweise widerlegt wurde (wobei „elementar“ hier keineswegs „einfach“ bedeutet).[15][16][17] Später wurden noch zahlreiche Varianten und Vereinfachungen dieser Beweise gefunden.
Zahlenbeispiele
Die folgende Tabelle zeigt konkrete Werte der Primzahlfunktion im Vergleich mit den Logarithmen, Legendres Formel und dem Integrallogarithmus.[18][19][20]
10 | 4 | 0,400000 | 4 | 0 | 0,921034 | 8 | 6 | 2 |
102 | 25 | 0,250000 | 22 | 3 | 1,151293 | 28 | 30 | 5 |
103 | 168 | 0,168000 | 145 | 23 | 1,160503 | 172 | 178 | 10 |
104 | 1.229 | 0,122900 | 1.086 | 143 | 1,131951 | 1.231 | 1.246 | 17 |
105 | 9.592 | 0,095920 | 8.686 | 906 | 1,104320 | 9.588 | 9.630 | 38 |
106 | 78.498 | 0,078498 | 72.382 | 6.116 | 1,084490 | 78.543 | 78.628 | 130 |
107 | 664.579 | 0,066458 | 620.421 | 44.158 | 1,071175 | 665.140 | 664.918 | 339 |
108 | 5.761.455 | 0,057615 | 5.428.681 | 332.774 | 1,061299 | 5.768.004 | 5.762.209 | 754 |
109 | 50.847.534 | 0,050848 | 48.254.942 | 2.592.592 | 1,053727 | 50.917.519 | 50.849.235 | 1.701 |
1010 | 455.052.511 | 0,045505 | 434.294.482 | 20.758.029 | 1,047797 | 455.743.004 | 455.055.615 | 3.104 |
1011 | 4.118.054.813 | 0,041181 | 3.948.131.654 | 169.923.159 | 1,043039 | 4.124.599.869 | 4.118.066.401 | 11.588 |
1012 | 37.607.912.018 | 0,037608 | 36.191.206.825 | 1.416.705.193 | 1,039145 | 37.668.527.415 | 37.607.950.281 | 38.263 |
1013 | 346.065.536.839 | 0,034607 | 334.072.678.387 | 11.992.858.452 | 1,035899 | 346.621.096.885 | 346.065.645.810 | 108.971 |
1014 | 3.204.941.750.802 | 0,032049 | 3.102.103.442.166 | 102.838.308.636 | 1,033151 | 3.210.012.022.164 | 3.204.942.065.692 | 314.890 |
1015 | 29.844.570.422.669 | 0,029845 | 28.952.965.460.217 | 891.604.962.452 | 1,030795 | 29.890.794.226.982 | 29.844.571.475.288 | 1.052.619 |
1016 | 279.238.341.033.925 | 0,027924 | 271.434.051.189.532 | 7.804.289.844.393 | 1,028752 | 279.660.033.612.131 | 279.238.344.248.557 | 3.214.632 |
1017 | 2.623.557.157.654.233 | 0,026236 | 2.554.673.422.960.305 | 68.883.734.693.281 | 1,026964 | 2.627.410.589.445.923 | 2.623.557.165.610.822 | 7.956.589 |
1018 | 24.739.954.287.740.860 | 0,024740 | 24.127.471.216.847.324 | 612.483.070.893.536 | 1,025385 | 24.775.244.142.175.635 | 24.739.954.309.690.415 | 21.949.555 |
1019 | 234.057.667.276.344.607 | 0,023406 | 228.576.043.106.974.646 | 5.481.624.169.369.960 | 1,023982 | 234.381.646.366.460.804 | 234.057.667.376.222.382 | 99.877.775 |
1020 | 2.220.819.602.560.918.840 | 0,022208 | 2.171.472.409.516.259.138 | 49.347.193.044.659.701 | 1,022725 | 2.223.801.523.570.829.204 | 2.220.819.602.783.663.484 | 222.744.644 |
1021 | 21.127.269.486.018.731.928 | 0,021127 | 20.680.689.614.440.563.221 | 446.579.871.578.168.707 | 1,021594 | 21.154.786.057.670.023.133 | 21.127.269.486.616.126.182 | 597.394.254 |
1022 | 201.467.286.689.315.906.290 | 0,020147 | 197.406.582.683.296.285.296 | 4.060.704.006.019.620.994 | 1,020570 | 201.721.849.105.666.574.218 | 201.467.286.691.248.261.498 | 1.932.355.208 |
1023 | 1.925.320.391.606.803.968.923 | 0,019253 | 1.888.236.877.840.225.337.614 | 37.083.513.766.578.631.309 | 1,019639 | 1.927.681.221.597.738.628.080 | 1.925.320.391.614.054.155.139 | 7.250.186.216 |
1024 | 18.435.599.767.349.200.867.866 | 0,018436 | 18.095.603.412.635.492.818.797 | 339.996.354.713.708.049.069 | 1,018789 | 18.457.546.327.619.878.007.916 | 18.435.599.767.366.347.775.144 | 17.146.907.278 |
1025 | 176.846.309.399.143.769.411.680 | 0,017685 | 173.717.792.761.300.731.060.452 | 3.128.516.637.843.038.351.228 | 1,018009 | 177.050.792.039.110.236.839.710 | 176.846.309.399.198.930.392.619 | 55.160.980.939 |
1026 | 1.699.246.750.872.437.141.327.603 | 0,016992 | 1.670.363.391.935.583.952.504.342 | 28.883.358.936.853.188.823.261 | 1,017292 | 1.701.156.120.834.278.630.173.694 | 1.699.246.750.872.593.033.005.724 | 155.891.678.121 |
1027 | 16.352.460.426.841.680.446.427.399 | 0,016352 | 16.084.980.811.231.549.172.264.034 | 267.479.615.610.131.274.163.365 | 1,016629 | 16.370.326.243.373.272.895.062.280 | 16.352.460.426.842.189.113.085.405 | 508.666.658.006 |
1028 | 157.589.269.275.973.410.412.739.598 | 0,015759 | 155.105.172.108.304.224.161.117.471 | 2.484.097.167.669.186.251.622.127 | 1,016016 | 157.756.767.911.194.258.241.759.313 | 157.589.269.275.974.838.158.399.972 | 1.427.745.660.374 |
1029 | 1.520.698.109.714.272.166.094.258.063 | 0,015207 | 1.497.567.178.976.730.440.176.306.617 | 23.130.930.737.541.725.917.951.446 | 1,015446 | 1.522.271.416.204.882.045.821.506.579 | 1.520.698.109.714.276.717.287.880.527 | 4.551.193.622.464 |
OEIS | Folge A006880 in OEIS | Folge A057834 in OEIS | Folge A057835 in OEIS | Folge A058289 in OEIS | Folge A057754 in OEIS | Folge A057752 in OEIS |
Die Größe heißt Primzahldichte.
Vergleicht man mit den Werten von in der Tabelle, scheint es so, als ob stets gelten würde. Tatsächlich wechselt die Differenz bei größer werdendem das Vorzeichen unendlich oft, wie J. E. Littlewood 1914 zeigen konnte.[21] Die gaußsche Formel unterschätzt also die Anzahl der Primzahlen in einem hinreichend großen Zahlenbereich, den Stanley Skewes 1933 mit der nach ihm benannten Skewes-Zahl nach oben abschätzen konnte.[22] Russell Sherman Lehman stellte 1966 einen wichtigen Satz über die obere Grenze auf und konnte sie auf eine „handhabbare“ Größe von 1,165·101165 drücken.[23] Unter Verwendung des Lehmanschen Satzes gelang es dem niederländischen Mathematiker Herman te Riele 1986 zu zeigen, dass es zwischen 6,627·10370 und 6,687·10370 mehr als 10180 aufeinanderfolgende Zahlen gibt, für die gilt.[24] Den derzeit besten untersten Wert, ebenfalls ausgehend von den Ergebnissen Lehmans, ermittelten im Jahr 2000 die beiden Mathematiker Carter Bays und Richard Hudson, die zeigten, dass ein solcher von Littlewood bewiesener Wechsel vor 1,398244·10316 auftritt.[25] Obwohl sie nicht beweisen konnten, damit tatsächlich den ersten Vorzeichenwechsel gefunden zu haben, legen ihre Berechnungen dies nahe. Genauer vermuten sie, dass die Ungleichung für immer gilt.
Explizite Formeln zur Primzahlfunktion
Formeln für Primzahlfunktionen gibt es in zwei Arten: arithmetische Formeln und analytische Formeln. Analytische Formeln für die Primzahlenzählung waren die ersten, die verwendet wurden, um den Primzahlsatz zu beweisen. Sie stammen aus der Arbeit von Bernhard Riemann und Hans von Mangoldt und sind allgemein als explizite Formeln bekannt.[26]
Wir haben folgenden Ausdruck für :
wobei
und der zweiten Tschebyschow-Funktion. Hier sind die Nullstellen der Riemannschen Zetafunktion im kritischen Streifen, bei dem der Realteil von zwischen Null und Eins liegt. Die Formel gilt für Werte von größer als eins, d. h. die Region von Interesse. Die Summe über den Wurzeln ist bedingt konvergent und sollte in der Reihenfolge zunehmender Absolutwerte des Imaginärteils genommen werden. Zu beachten ist, dass die gleiche Summe über die trivialen Wurzeln den letzten Subtrahenden in der Formel ergibt.
Ähnlich wie für kann auch für die von Riemann eingeführte Primzahlen abzählende Funktion [27] eine Mittelung an den Sprungstellen eingeführt werden. Für haben wir die kompliziertere Formel
Auch hier gilt die Formel wieder für , während die nicht-trivialen Nullstellen der Riemannschen Zetafunktion nach ihrem Absolutwert geordnet sind, und letzteres Integral wiederum mit Minuszeichen genommen ist genau die gleiche Summe, aber über den trivialen Nullstellen. Der erste Ausdruck ist die übliche logarithmische Integralfunktion; der Ausdruck im zweiten Term sollte als betrachtet werden, wobei die analytische Fortsetzung der exponentiellen Integralfunktion von der positiven Realen zur komplexen Ebene mit entlang der negativen Realen Achse geschnittenem Ast ist.
Somit ergibt sich wenn man wie oben eine an den Sprungstellen mittelnde Funktion einführt mit der Möbius-Inversionsformel[28]
gültig für , wobei
die sogenannte Riemannsche R-Funktion ist.[29] Die letztgenannte Reihe dafür ist bekannt als Gram-Reihe[30] und konvergiert für alle positiven . ist die Möbius-Funktion und die riemannsche Zetafunktion.
Die Summe über nichttriviale Nullstellen der Zetafunktion in der Formel für beschreibt die Schwankungen von , während die restlichen Terme den „glatten“ Teil der Primzahlfunktion ausmachen.[31]
Somit kann man
als den besten Fit der für bezeichnen.
Die Amplitude des „verrauschten“ Teils liegt heuristisch bei ca. , womit die Schwankungen der Primzahlenverteilung mit der -Funktion dargestellt werden können:
Eine umfangreiche Tabelle mit den Werten von steht zur Verfügung.[32]
Aussage über die Folge der Primzahlen
Der Primzahlsatz gibt auch Auskunft über die aufsteigende Folge der Primzahlen. So ist er äquivalent zu der Aussage
und es gilt sogar für alle [33]
Primzahlsatz für arithmetische Progressionen, Satz von Siegel-Walfisz
Sei die Anzahl der Primzahlen kleiner gleich in der arithmetischen Progression , wobei koprim sind (). Peter Gustav Lejeune Dirichlet (siehe Dirichletscher Primzahlsatz) und Adrien-Marie Legendre vermuteten, dass asymptotisch
mit der Eulerschen Phi-Funktion (der Anzahl zu teilerfremden Zahlen kleiner als ). Das wurde von Charles-Jean de La Vallée Poussin bewiesen mit ähnlichen Methoden wie beim Beweis des Primzahlsatzes.
Als Beispiel kann man das auf die Verteilung der Primzahlen auf ihre Endziffern im Dezimalsystem anwenden (analog gilt das für jede Basis). Es kommen nur die Ziffern 1, 3, 7, 9 in Betracht (außer für die Primzahlen 5 und 2 selbst) und aus dem Primzahlsatz für arithmetische Progressionen folgt, dass die Primzahlen unter ihren Endziffern gleich verteilt sind. Es gibt allerdings einige Ungleichgewichte, die Gegenstand der Forschung sind. So gibt es numerisch meist mehr Primzahlen der Form als unterhalb einer bestimmten Grenze, obwohl die Primzahlen asymptotisch auf beide Klassen gleich verteilt sind (Chebyshev’s Bias,[34] auch Primzahl-Rennen, nach Pafnuti Lwowitsch Tschebyschow). Nach John Edensor Littlewood wechselt auch unendlich oft das Vorzeichen. Ähnliche Phänomene gibt es bei Betrachtung anderer Kongruenzen als solchen mod . Wie K. Soundararajan und Oliver 2016 fanden, gibt es auch Abweichungen der Gleichverteilung wenn man die Verteilung der Endziffern bei aufeinanderfolgenden Primzahlen betrachtet.
Genauer wurde die Verteilung in arithmetischen Progressionen durch Arnold Walfisz[35][36] untersucht im Satz von Siegel und Walfisz (er basiert auf einem Resultat von Carl Ludwig Siegel[37]). Der Satz liefert einen asymptotischen Fehlerterm für die obige Formel. Dabei ist eine Konstante und eine beliebige Zahl mit .
Ursprünglich ist der Satz von Siegel und Walfisz für die Funktion
formuliert mit der Mangoldt-Funktion . Mit den bereits eingeführten Bezeichnungen (sowie wie oben , ) besagt der Satz dann, dass es für jedes N eine Konstante gibt, so dass:
Der Satz ist nicht effektiv, da nichts über die Größe der Konstante ausgesagt wird. Schärfere Aussagen zum Fehlerterm im Dirichletschen Primzahlsatz für arithmetische Progressionen gibt der Satz von Bombieri und Winogradow (und die Vermutung von Elliott und Halberstam).
Literatur
- E. Freitag, R. Busam: Funktionentheorie. 3. Auflage. Springer-Verlag, Berlin 2000. ISBN 3-540-67641-4.
- G. H. Hardy, E. M. Wright: An Introduction to the Theory of Numbers. 5. Auflage, Oxford University Press, Oxford 1979. ISBN 0-19-853171-0.
- Peter Bundschuh: Einführung in die Zahlentheorie. Springer 2008 (mit Beweis von Newman)
Weblinks
- PrimePages: How many primes are there? (englisch)
- Eric W. Weisstein: Prime Number Theorem. In: MathWorld (englisch).
Einzelnachweise
- Donald J. Newman: Analytic Number Theory. Springer, 1998. Newman: Simple Analytic Proof of the Prime Number Theorem. In: American Mathematical Monthly, Band 87, 1980, S. 693–696
- Zu Newmans Beweis auch: J. Korevaar: On Newman’s quick way to the prime number theorem. In: Mathematical Intelligencer, Band 4, 1982, Nr. 3. Don Zagier: Newman’s Short Proof of the Prime Number Theorem. In: American Mathematical Monthly, Band 104, 1997, S. 705–708. Der Beweis ist auch dargestellt in Bundschuh: Einführung in die Zahlentheorie. Springer, 2008. Newman: Analytic Number Theory. Springer, 1998.
- Arnold Walfisz: Weylsche Exponentialsummen in der neueren Zahlentheorie. VEB Deutscher Verlag der Wissenschaften 1963, S. 187. Der Beweis bei Walfisz stammt von Hans-Egon Richert. Derbyshire, Prime Obsession, Joseph Henry Press 2003, S. 244, bezeichnet das als die beste ihm bekannte Abschätzung des Fehlerterms.
- L. Schoenfeld, Sharper Bounds for the Chebyshev Functions θ(x) and ψ(x). II, Mathematics of Computation, Band 30, 1976, S. 337–360
- Dieser hatte sich 1792 oder 1793 mit dem Thema beschäftigt, siehe den Brief aus dem Jahr 1849 an Johann Franz Encke, Textarchiv – Internet Archive. Dort diskutiert er auch die Konstante von Legendre und den Integrallogarithmus.
- Adrien-Marie Legendre: D’une loi très-remarquable observée dans l’énumération des nombres premiers. In: Théorie des nombres. 3. Auflage. Didot, Paris 1830, Band 2, S. 65–70, Textarchiv – Internet Archive
- Pafnuti Lwowitsch Tschebyschew: Sur la fonction qui détermine la totalité des nombres premiers inférieurs à une limite donnée. In: Mémoires présentés à l’Académie Impériale des sciences de St.-Pétersbourg par divers savants, 6, 1851, S. 141–157. Auch in: Journal de mathématiques pures et appliquées, 1. F., 17, 1852, S. 341–365. Nachdruck in Andrej Andrejewitsch Markoff, Nikolai Jakowlewitsch Sonin (Hrsg.): Œuvres de P. L. Tchebychef. Band 1. Akademie, St. Petersburg 1898, S. 27–48, Textarchiv – Internet Archive.
- Einen deutlich vereinfachten Beweis für eine schwächere Abschätzung gibt Don Zagier, Die ersten 50 Millionen Primzahlen, Elemente der Mathematik (Beihefte zur Zeitschrift), Band 15 (1977), S. 15 f., doi:10.5169/seals-10209 (frei zugänglich)
- James Joseph Sylvester: On arithmetical series. In: Messenger of Mathematics, 21, 1892, S. 1–19, 87–120. Nachdruck in Henry Frederick Baker (Hrsg.): The Collected Mathematical Papers of James Joseph Sylvester. 4 Bände. University Press, Cambridge 1904–1912, Band 4. 1912, S. 687–731, archive.org.
- Bernhard Riemann: Über die Anzahl der Primzahlen unter einer gegebenen Größe. In: Monatsberichte der Königlichen Preußischen Akademie der Wissenschaften zu Berlin, 1859, S. 671–680. Vgl. auch Wilhelm Scheibner: Ueber die Anzahl der Primzahlen unter einer beliebigen Grenze. In: Archiv der Mathematik und Physik, 5, 1860, S. 233–252.
- Hans von Mangoldt: Zu Riemanns Abhandlung „Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse“. In: Journal für die reine und angewandte Mathematik, 114, 1895, S. 255–305.
- Jacques Hadamard: Sur la distribution des zéros de la fonction ζ(s) et ses conséquences arithmétiques. (PDF; 1,3 MB). In: Bulletin de la Société Mathématique de France, 24, 1896, S. 199–220.
- Charles de La Vallée Poussin: Recherches analytiques de la théorie des nombres premiers. In: Annales de la Société Scientifique de Bruxelles 20 B (1896), S. 183–256, 281–352, 363–397; 21 B (1897), S. 351–368.
- Kürzere Versionen der Beweise von Hadamard, De la Vallée-Poussin sind in E. C. Titchmarsh: The Theory of the Riemann Zeta-Function. Clarendon Press, 1951, 1986, Kapitel 3
- Atle Selberg: An elementary proof of the prime-number theorem. In: Annals of Mathematics, 50, 1949, Nr. 2, S. 305–313.
- Paul Erdős: On a new method in elementary number theory which leads to an elementary proof of the prime number theorem. (PDF; 687 kB). In: Proceedings of the National Academy of Sciences of the United States of America, 35, 1949, S. 374–384.
- Der elementare Beweis nach Erdös und Selberg wird in modifizierter Form auch in Hardy, Wright, Introduction to the theory of numbers, Oxford 1975, präsentiert
- Die Werte für π(x) sind aus Chris K. Caldwell: How Many Primes Are There? Prime Pages, abgerufen am 12. Dezember 2015 (englisch).
- Der Wert für π(1026) ist aus D. B. Staple: The combinatorial algorithm for computing pi(x). Dalhousie University, abgerufen am 12. Dezember 2015 (englisch).
- Der Wert für π(1027) ist von Kim Walisch: New confirmed pi(10^27),… pi(10^29) prime counting function records. In: mersenneforum.org. Abgerufen am 1. Dezember 2016 (englisch).
- John E. Littlewood: Sur la distribution des nombres premiers. In: Comptes Rendus de l'Académie des Sciences 158 (1914), S. 1869–1872.
- Stanley Skewes: On the difference . In: Journal of the London Mathematical Society 8 (1933), S. 277–283; On the difference (II). In: Proceedings of the London Mathematical Society 5 (1955), S. 48–70.
- Russell Sherman Lehman: On the difference π(x) − li(x). (PDF; 2,6 MB). In: Acta Arithmetica 11 (1966), S. 397–410.
- Herman J. J. te Riele: On the Sign of the Difference π(x) − li(x). (PDF; 550 kB). In: Mathematics of Computation, 48, 1987, S. 323–328. Vgl. Chris K. Caldwell: How many primes are there? (Memento vom 15. Oktober 2012 im Internet Archive) Kap. 3, History of the Prime Number Theorem.
- Carter Bays, Richard H. Hudson: A new bound for the smallest x with π(x) > li(x). (PDF; 422 kB). In: Mathematics of Computation, 69, 2000, Nr. 231, S. 1285–1296.
- E.C. Titchmarsh: The Theory of Functions, 2nd ed. Oxford University Press, 1960 (englisch).
- Siehe Riemannsche Vermutung oder Riemann Prime Counting Function, Mathworld
- Hans Riesel, Gunnar Göhl: Some calculations related to Riemann’s prime number formula. In: Mathematics of Computation. 24. Jahrgang, Nr. 112. American Mathematical Society, 1970, ISSN 0025-5718, S. 969–983, doi:10.2307/2004630 (englisch).
- Eric W. Weisstein: Riemann Prime Counting Function. In: MathWorld (englisch).
- Eric W. Weisstein: Gram Series. In: MathWorld (englisch).
- The encoding of the prime distribution by the zeta zeros. Matthew Watkins, archiviert vom am 4. Februar 2013; abgerufen am 14. September 2008 (englisch).
- Values of π(x) and Δ(x) for various values of x. Andrey V. Kulsha, abgerufen am 14. September 2008 (englisch).
- Pierre Dusart: The prime is greater than for . In: Mathematics of Computation. 68. Jahrgang, Nr. 225, 1999, S. 411–415, doi:10.1090/S0025-5718-99-01037-6 (englisch).
- Chebyshev’s Bias, mathworld
- A. Walfisz: Zur additiven Zahlentheorie II. Mathematische Zeitschrift, Band 40, 1936, S. 592–607
- Zum Satz von Siegel-Walfisz siehe auch Harold Davenport: Multiplicative Number Theory. 2. Auflage. Springer, 1980, S. 133, Terry Tao, Notes Complex Analytic Multiplicative Number Theory (exercise 64)
- Siegel: Über die Classenzahl quadratischer Zahlkörper. In: Acta Arithmetica, Band 1, 1935, S. 83–86