Optionale σ-Algebra

Die optionale σ-Algebra bezeichnet in der Theorie der stochastischen Prozesse eine σ-Algebra auf dem Produktraum , die von den adaptierten Càdlàg-Prozessen erzeugt wird.

Ein Prozess, der messbar bezüglich dieser σ-Algebra ist, heißt optional.

Definition

Sei ein filtrierter Wahrscheinlichkeitsraum, der die üblichen Bedingungen erfüllt.

Die optionale σ-Algebra (oder notiert) ist die σ-Algebra auf , die von den -adaptierten Càdlàg-Prozessen erzeugt wird. Ein Prozess, der messbar bezüglich dieser σ-Algebra ist, d. h. die Abbildung ist -messbar, heißt optional.[1]

Eigenschaften

Sei die vorhersagbare σ-Algebra und die progressiv messbare σ-Algebra. Dann gilt die Inklusion

Wichtige Sätze

Die folgenden Sätze heißen Sektionssatz (englisch section theorem) und Projektionssatz (englisch projection theorem). Von beiden gibt es eine optionale Variante und eine vorhersagbare Variante.

Für beide Sätze setzen wir einen filtrierten Wahrscheinlichkeitsraum voraus, der die üblichen Bedingungen erfüllt.

Optionaler Sektionssatz

Für eine Stoppzeit definieren wir ihren Graphen , weiter definieren wir die kanonische Projektion .

Sei eine optionale Menge. Für jedes existiert eine Stoppzeit , so dass

  1. für den Graphen gilt.
  2. [2]

Optionaler Projektionssatz

Sei ein messbarer Prozess, der entweder positiv oder beschränkt ist. Dann existiert ein eindeutiger (bis auf Ununterscheidbarkeit) optionaler Prozess , so dass

fast sicher für jede Stoppzeit .

Der Prozess heißt optionale Projektion und wird auch mit notiert.[3]

Einzelnachweise

  1. Daniel Revuz und Marc Yor: Continuous Martingales and Brownian Motion. In: Springer (Hrsg.): Grundlehren der mathematischen Wissenschaften. Band 293, 1999, S. 172 (englisch).
  2. Daniel Revuz und Marc Yor: Continuous Martingales and Brownian Motion. In: Springer (Hrsg.): Grundlehren der mathematischen Wissenschaften. Band 293, 1999, S. 172 (englisch).
  3. Daniel Revuz und Marc Yor: Continuous Martingales and Brownian Motion. In: Springer (Hrsg.): Grundlehren der mathematischen Wissenschaften. Band 293, 1999, S. 173 (englisch).
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.