Offenes Buch

In der Mathematik sind Offene Bücher (engl.: open book decompositions) gewisse Zerlegungen von Mannigfaltigkeiten, die bei der Klassifikation von Kontaktstrukturen und bei der Konstruktion von Blätterungen nützlich sind.

Definition

Sei eine geschlossene orientierte -Mannigfaltigkeit. Ein offenes Buch auf ist ein Paar mit:

  1. ist eine orientierte -dimensionale Untermannigfaltigkeit, die Bindung des offenen Buches.
  2. ist ein Faserbündel, so dass das Innere einer kompakten -dimensionalen Mannigfaltigkeit – der Seite des offenen Buches – und für alle ist.

Existenz

Satz von Alexander (1920): Jede geschlossene orientierte 3-Mannigfaltigkeit lässt sich als offenes Buch darstellen.

Satz von Winkelnkemper (1973): Eine einfach zusammenhängende geschlossene Mannigfaltigkeit der Dimension lässt sich als offenes Buch darstellen genau dann, wenn ihre Signatur verschwindet. (Letzteres trifft insbesondere immer zu, falls nicht durch 4 teilbar ist.)  

Blätterungen

Sei ein offenes Buch auf einer 3-Mannigfaltigkeit . Dann hat eine Blätterung durch Fasern von und auf einer Umgebung der Bindung kann man die Reeb-Blätterung definieren, diese hat insbesondere als ein kompaktes Blatt. Durch Turbulisierung kann man die Blätterung auf tangential zu diesem kompakten Blatt machen, erhält also eine Blätterung auf ganz .

Kontaktstrukturen

Sei ein offenes Buch auf einer 3-Mannigfaltigkeit . Eine Kontaktstruktur wird von getragen, wenn

  1. eine positive Volumenform auf jeder Seite ist und
  2. auf der Bindung .

Satz von Thurston-Winkelnkemper (1975): Jedes offene Buch trägt eine Kontaktstruktur.

Satz von Giroux (2000): Jede orientierte Kontaktstruktur wird von einem offenen Buch getragen. Zwei vom selben offenen Buch getragene Kontaktstrukturen sind isotop.

Literatur

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.