Natrozippeit

Natrozippeit (auch Natrium-Zippeit) ist ein eher selten vorkommendes Mineral aus der Mineralklasse der Sulfate, Selenate, Tellurate, Chromate, Molybdate und Wolframate (ehemals Sulfate, Chromate, Molybdate und Wolframate). Es kristallisiert im orthorhombischen Kristallsystem mit der chemischen Zusammensetzung Na4(UO2)6(SO4)3(OH)10·4H2O[3].

Natrozippeit
Natrozippeit aus der Bukov-Mine bei Rožná, Tschechische Republik, (Bildbreite: 23 mm)
Allgemeines und Klassifikation
IMA-Nummer

1971-004[1]

IMA-Symbol

Nzip[2]

Chemische Formel Na4(UO2)6(SO4)3(OH)10·4H2O[3]
Mineralklasse
(und ggf. Abteilung)
Sulfate (Selenate, Tellurate, Chromate, Molybdate, Wolframate) (ehemals Sulfate, Chromate, Molybdate und Wolframate)
System-Nummer nach
Strunz (8. Aufl.)
Lapis-Systematik
(nach Strunz und Weiß)
Strunz (9. Aufl.)
Dana

VI/D.20
VI/D.20-038

7.EC.05
31.10.4.2
Kristallographische Daten
Kristallsystem orthorhombisch
Kristallklasse; Symbol 2/m
Raumgruppe (Nr.) n. d.[4] (Nr. n. d.)
Gitterparameter a = 8,82 Å; b = 17,12 Å; c = 7,32 Å[4]
Physikalische Eigenschaften
Mohshärte 2[4]
Dichte (g/cm3) 3,3 bis 4,3[3][4]
Spaltbarkeit vollkommen
Farbe gelb, gelb-orange, gelb-grün
Strichfarbe gelb
Transparenz durchscheinend
Glanz matt, erdig
Radioaktivität sehr stark
Kristalloptik
Brechungsindizes nα = 1,630 bis 1,637
nβ = 1,685 bis 1,689
nγ = 1,732 bis 1,739[4]
Doppelbrechung δ = 0,102[5]

Natrozippeit entwickelt nur winzige Kristalle bis etwa 0,1 Millimeter Durchmesser mit rhombischem, länglichem- und dünntafeligem Habitus. Es besteht meist aus ineinander verwachsenen Plättchen, wurmförmigen oder pulverförmigen Mineral-Aggregaten und kommt auch in Form körniger und krustiger Überzüge vor.[4] Die zitronengelben, gelblich-orangen, selten auch grünlich-gelben Kristalle sind durchscheinend mit matten Kristallflächen. Auf der Strichtafel hinterlässt Natrozippeit einen gelben Strich.[5]

Abgrenzung

Zippeit steht als eines der sechs Mineralien der Zippeitgruppe 7.EC.05 in der 9. Auflage der Strunz’schen Mineralsystematik, wird aber meist irrtümlich verallgemeinert.

Etymologie und Geschichte

Natrozippeit wurde zu Ehren des böhmischen Naturwissenschaftlers Franz Xaver Zippe nach diesem benannt und ergibt sich auch aus seiner chemischen Zusammensetzung.[3] Der Name Zippeit wurde erstmals 1845 von Haidinger für ein erdiges, gelbes Uranylsulfat aus Jáchymov (deutsch Sankt Joachimsthal) in Tschechien benannt, welches aber bereits von John 1821 beschrieben wurde. Erst genauere Untersuchungen Clifford Frondels 1976 gaben genaueren Aufschluss über die chemische Zusammensetzung und Besetzung der Zippeitgruppe, so dass alle Erwähnungen in der Literatur vor diesem Zeitpunkt sehr unspezifisch sind oder sogar nur dem Aussehen nach dieser zugeordnet wurden.[6]

Klassifikation

In der veralteten, aber teilweise noch gebräuchlichen 8. Auflage der Mineralsystematik nach Strunz gehörte der Natrozippeit zur gemeinsamen Mineralklasse der „Sulfate, Selenate, Tellurate, Chromate, Molybdate und Wolframate“ und dort zur Abteilung der „Wasserhaltigen Sulfate mit fremden Anionen“ wo er zusammen mit Cobaltzippeit, Jáchymovit, Uranopilit, Magnesiumzippeit, Marécottit, Metauranopilit, Nickelzippeit, Rabejacit, Zinkzippeit und Zippeit die Uranopilit-Gruppe VI/D.20 bildete.

Die seit 2001 gültige und von der International Mineralogical Association (IMA) verwendete 9. Auflage der Strunz’schen Mineralsystematik ordnet den Natrozippeit in die Klasse der „Sulfate, Selenate, Tellurate, Chromate, Molybdate und Wolframate“ ein, dort allerdings in die Abteilung der „Uranylsulfate“. Diese ist weiter unterteilt, so dass das Mineral entsprechend seiner Zusammensetzung in der Unterabteilung „Mit mittelgroßen und großen Kationen“ zu finden ist, wo es sich als Mitglied der Gruppe 7.EC.05 mit dem Cobaltzippeit, Magnesiozippeit, Nickelzippeit, Zinkzippeit und Zippeit befindet.

Die vorwiegend im englischen Sprachraum gebräuchliche Systematik der Minerale nach Dana ordnet den Natrozippeit in die Klasse der „Sulfate, Chromate und Molybdate“ und dort in die Abteilung der „Wasserhaltige Sulfate mit Hydroxyl oder Halogen“ ein. Hier ist er als Mitglied in der Zippeitgruppe innerhalb der Unterabteilung „Verschiedene wasserhaltige Sulfate mit Hydroxyl oder Halogen“ zu finden.

Kristallstruktur

Natrozippeit kristallisiert orthorhombisch in noch undefinierter Raumgruppe mit den Gitterparametern a = 8,82 Å, b = 17,12 Å und c = 7,32 Å.[4]

Eigenschaften

Durch seinen Urangehalt von bis zu 58,1 % ist das Mineral sehr stark radioaktiv. Unter Berücksichtigung der Mengenanteile der radioaktiven Elemente in der idealisierten Summenformel sowie der Folgezerfälle der natürlichen Zerfallsreihen wird für das Mineral eine spezifische Aktivität von 103,98 kBq/g angegeben (zum Vergleich: natürliches Kalium 31,2 Bq/g). Der zitierte Wert kann je nach Mineralgehalt und Zusammensetzung der Stufen deutlich abweichen, auch sind selektive An- oder Abreicherungen der radioaktiven Zerfallsprodukte möglich und ändern die Aktivität. Natrozippeit ist in Säuren gut löslich und zeigt unter UV-Licht eine gelbe Fluoreszenz.[5]

Modifikationen und Varietäten

Natrozippeit mit der chemischen Zusammensetzung Na5(UO2)8(SO4)4O5(OH)3·12H2O ist eine Modifikation mit der Mohshärte 5 - 5,5 und kristallisiert im monoklinen Kristallsystem. P. C. Burns et al. stellte diese synthetisch dar um dessen chemische Struktur und Kristallchemie zu untersuchen.[7][8]

Bildung und Fundorte

Natrozippeit bildet sich als Sekundärmineral in Oxidationszonen von Uranlagerstätten. Begleitminerale sind unter anderem Andersonit, Uranopilit, Johannit, Schröckingerit und anderen Vertretern der „Zippeit-Gruppe“. Seine Typlokalität befindet sich in der Happy Jack Mine, White Canyon, Utah, USA. Weitere bisher bekannte Fundorte sind Geevor Mine bei St.Just in England, Rožná, Jáchymov und in Jánská žíla bei Příbram in der Tschechischen Republik und La Creusaz in der Schweiz.

Vorsichtsmaßnahmen

Aufgrund der Toxizität und der starken Radioaktivität des Minerals sollten Mineralproben vom Natrozippeit nur in staub- und strahlungsdichten Behältern, vor allem aber niemals in Wohn-, Schlaf- und Arbeitsräumen aufbewahrt werden. Ebenso sollte eine Aufnahme in den Körper (Inkorporation, Ingestion) auf jeden Fall verhindert und zur Sicherheit direkter Körperkontakt vermieden sowie beim Umgang mit dem Mineral Atemschutzmaske und Handschuhe getragen werden.

Siehe auch

Commons: Zippeite – Sammlung von Bildern

Einzelnachweise

  1. Malcolm Back, Cristian Biagioni, William D. Birch, Michel Blondieau, Hans-Peter Boja und andere: The New IMA List of Minerals – A Work in Progress – Updated: January 2023. (PDF; 3,7 MB) In: cnmnc.main.jp. IMA/CNMNC, Marco Pasero, Januar 2023, abgerufen am 26. Januar 2023 (englisch).
  2. Laurence N. Warr: IMA–CNMNC approved mineral symbols. In: Mineralogical Magazine. Band 85, 2021, S. 291–320, doi:10.1180/mgm.2021.43 (englisch, cambridge.org [PDF; 320 kB; abgerufen am 5. Januar 2023]).
  3. Webmineral - Natrozippeite
  4. John W. Anthony, Richard A. Bideaux, Kenneth W. Bladh, Monte C. Nichols (Hrsg.): Handbook of Mineralogy, Mineralogical Society of America, 2001 (Sodium-zippeite (PDF, englisch 64,7 kB))
  5. Mindat - Natrozippeite
  6. N. J. Elton, J. J. Hooper: Sodium-zippeite from Geevor mine, St. Just, Cornwall In: Mineralogical Magazine 1993, 57, S. 352–354. (PDF (englisch) 1,7 MB)
  7. Ray L. Frost, Jiří Čejka, Godwin A. Ayoko and Matt L. Weier: Raman spectroscopic and SEM analysis of sodium zippeite In: Journal of Raman Spectroscopy 2007, 38(10), S. 1311–1319. (PDF (englisch) 418 kB)
  8. P. C. Burns, Kathryn M. Deely, Leslie A. Hayden: The Crystal Chemistry of the Zippeite Group In: The Canadian Mineralogist 2003, 41, S. 687–706. (PDF (englisch) 3,3 MB)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.