Lydersen-Methode

Die Lydersen-Methode[1] ist eine Gruppenbeitragsmethode zur Abschätzung der kritischen Größen , und . Die Lydersen-Methode ist Vorbild für viele neuere Modelle nach Joback[2], Ambrose[3], Constantinou und Gani[4] u. a. Die Lydersen-Methode basiert im Falle der Abschätzung der kritischen Temperatur auf der Guldberg-Regel, welche die kritische Temperatur in ein Verhältnis zum Normalsiedepunkt setzt.

Bestimmungsgleichungen

  • Kritische Temperatur:
  • Kritischer Druck:
  • Kritisches Volumen:

ist der Normalsiedepunkt, die molare Masse, sind Gruppenbeiträge (unterschiedlich für die einzelnen Größen) für funktionelle Gruppen eines Moleküls.

Gruppenbeiträge

Gruppe Gi (Tc) Gi (Pc) Gi (Vc) Gruppe Gi (Tc) Gi (Pc) Gi (Vc)
–CH3,–CH20,0200,22755,0 >CH0,0120,21051,0
–C<0,21041,0 =CH2,=CH0,0180,19845,0
=C<,=C=0,19836,0 =C–H,=C–0,0050,15336,0
–CH2–(Ring)0,0130,18444,5 >CH– (Ring)0,0120,19246,0
>C< (Ring)−0,0070,15431,0 =CH–,=C<,=C=(Ring)0,0110,15437,0
–F0,0180,22418,0 –Cl0,0170,32049,0
–Br0,0100,50070,0 –I0,0120,83095,0
–OH0,0820,06018,0 –OH(Aromat)0,031−0,0203,0
–O–0,0210,16020,0 –O– (Ring)0,0140,1208,0
>C=O0,0400,29060,0 >C=O (Ring)0,0330,20050,0
HC=O–0,0480,33073,0 –COOH0,0850,40080,0
-COO-0,0470,47080,0 -NH20,0310,09528,0
>NH0,0310,13537,0 >NH(Ring)0,0240,09027,0
>N0,0140,17042,0 >N–(Ring)0,0070,13032,0
–CN0,0600,36080,0 -NO20,0550,42078,0
–SH,–S–0,0150,27055,0 –S– (Ring)0,0080,24045,0
=S0,0030,24047,0 >Si<0,0300,540
–B<0,030

Beispielrechnung

Gruppenzuordnung für Aceton

Aceton wird in zwei unterschiedliche Fragmente zerlegt, eine Carbonylgruppe und zwei Methylgruppen. Für das kritische Volumen ergibt sich folgende Rechnung:

In der Literatur[5] finden sich Werte von 215,90 cm3,[6] 230,5 cm3[7] und 209,0 cm3.[8]

Einzelnachweise

  1. Lydersen a.L., „Estimation of Critical Properties of Organic Compounds“, University of wisconsin College Engineering, Eng. Exp. Stn. Rep. 3, Madison, Wisconsin
  2. K. G Joback, R. C Reid: Estimation of pure-component properties from group-contributions. In: Chemical Engineering Communications. Band 57, Nr. 1, 1987, S. 233–243.
  3. D. Ambrose, Teddington (England). Div. of Chemical Standards National Physical Lab.: Correlation and estimation of vapour-liquid critical properties. Part 1: Critical temperatures of organic compounds. Rep.No. 92. National Physical Lab., Teddington (England). Div. of Chemical Standards, 1978, S. 1–35.
  4. Leonidas Constantinou, Rafiqul Gani: New group contribution method for estimating properties of pure compounds. In: AIChE Journal. Band 40, Nr. 10, Oktober 1994, S. 1697–1710, doi:10.1002/aic.690401011.
  5. Dortmunder Datenbank
  6. A. N. Campbell, R. M. Chatterjee: The critical constants and orthobaric densities of acetone, chloroform, benzene, and carbon tetrachloride. In: Canadian Journal of Chemistry. Band 47, Nr. 20, 15. Oktober 1969, S. 3893–3898, doi:10.1139/v69-646.
  7. W. Herz, E. Neukirch: On Knowledge of the Critical State. In: Z.Phys.Chem.(Leipzig). Band 104, 1923, S. 433–450.
  8. Kenneth A. Kobe, Horace R. Crawford, Robert W. Stephenson: Industrial Design Data – Critical Properties and Vapor Presesures of Some Ketones. In: Industrial & Engineering Chemistry. Band 47, Nr. 9, September 1955, S. 1767–1772, doi:10.1021/ie50549a025.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.