Kompakte Lie-Gruppe

Kompakte Lie-Gruppen und ihre Darstellungstheorie sind in vielen Bereichen der Mathematik und Physik von Bedeutung.

Der Kreis mit Mittelpunkt 0 und Radius 1 in der komplexen Zahlenebene ist eine Lie-Gruppe mit komplexer Multiplikation. Er ist kompakt, weil er eine abgeschlossene und beschränkte Teilmenge der Ebene ist.

Definition

Eine kompakte Lie-Gruppe ist eine Lie-Gruppe, die mit der zugrundeliegenden Topologie ein kompakter Hausdorffraum ist.

Klassifikation

Jede einfache, zusammenhängende und einfach zusammenhängende, kompakte Lie-Gruppe ist eine der folgenden:

  • symplektische Gruppe ,
  • spezielle unitäre Gruppe ,
  • Spin-Gruppe ,
  • die kompakte reelle Form einer der exzeptionellen Lie-Gruppen .

Jede zusammenhängende und einfach zusammenhängende, kompakte Lie-Gruppe ist ein Produkt einfacher, zusammenhängender und einfach zusammenhängender, kompakter Lie-Gruppen.

Jede zusammenhängende, kompakte Lie-Gruppe hat eine zentrale Erweiterung

,

wobei eine endliche abelsche Gruppe und das Produkt eines Torus mit einer zusammenhängenden und einfach zusammenhängenden, kompakten Lie-Gruppe ist.

Eine kompakte Gruppe hat endlich viele Zusammenhangskomponenten, sie ist also eine endliche Erweiterung ihrer Einheitskomponente .

Literatur

  • Mark Sepanski: Compact Lie Groups, Springer Verlag 2007. ISBN 978-0387302638
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.