Jacobi-Polynom
Die Jacobi-Polynome (nach Carl Gustav Jacob Jacobi), auch hypergeometrische Polynome, sind eine Menge polynomieller Lösungen des Sturm-Liouville-Problems, die einen Satz orthogonaler Polynome bilden, und zwar auf dem Intervall bezüglich der Gewichtsfunktion mit . Sie haben die explizite Form[1]
oder mit Hilfe der verallgemeinerten hypergeometrischen Funktion :
Rodrigues-Formel
Rekursionsformeln
Man kann die Jacobi-Polynome auch mit Hilfe einer Rekursionsformel bestimmen.
mit den Konstanten:
Eigenschaften
Der Wert für ist
- .
Es gilt die folgende Symmetriebeziehung
woraus sich der Wert für ergibt:
Sie erfüllen die Orthogonalitätsbedingung
Ableitungen
Aus der expliziten Form können die -ten Ableitungen abgelesen werden. Sie ergeben sich als:
Nullstellen
Die Eigenwerte der symmetrischen Tridiagonalmatrix
mit
stimmen mit den Nullstellen von überein. Somit bietet der QR-Algorithmus die Möglichkeit, die Nullstellen näherungsweise zu berechnen. Weiterhin kann man beweisen, dass sie einfach sind und im Intervall liegen.
Erzeugende Funktion
Für alle gilt
Die Funktion
wird daher als erzeugende Funktion der Jacobi-Polynome bezeichnet.
Spezialfälle
Einige wichtige Polynome können als Spezialfälle der Jacobi-Polynome betrachtet werden:
- für : Legendre-Polynome
- Gegenbauer-Polynome
- Tschebyschow-Polynome erster und zweiter Ordnung
- der Radialterm der Zernike-Polynome
Literatur
- Eric W. Weisstein: Jacobi Polynomial. In: MathWorld (englisch).
- Sherwin Karniadakis: Spectral/hp Element Methods for CFD. 1. Auflage. Oxford University Press, New York 1999, ISBN 0-19-510226-6.
- I. S. Gradshteyn, I. M. Ryzhik: Table of Integrals, Series, and Products. 5. Auflage. Academic Press Inc., Boston, San Diego, New York, London, Sydney, Tokyo, Toronto 1994, ISBN 0-12-294755-X.
- Peter Junghanns: EAGLE-GUIDE Orthogonale Polynome. 1. Auflage. Books on Demand, Leipzig 2009, ISBN 3-937219-28-5.
Einzelnachweise
- Abramowitz, Stegun (1965): Formel 22.3.2 - enthält darüber hinaus umfangreiche Zusatzinformationen und Belege für die weiteren hier genannten Formeln