Bialgebra

Eine Bialgebra hat sowohl die Struktur einer unitären, assoziativen Algebra als auch die dazu duale Struktur einer Koalgebra. Der wichtigste Spezialfall von Bialgebren sind Hopf-Algebren, zu denen auch die Quantengruppen gehören.

Bialgebra

berührt die Spezialgebiete

ist Spezialfall von

umfasst als Spezialfälle

Definition

Sei ein Körper und sowohl unitäre assoziative Algebra über als auch Koalgebra über . Dabei bezeichne die Multiplikation, die Eins (Einbettung des Körpers in die Algebra), die Komultiplikation und die Koeins.

heißt Bialgebra über wenn die folgenden äquivalenten Kompatibilitätsbedingungen erfüllt sind.

  • Die Komultiplikation und die Koeins sind Algebrahomomorphismen.
  • Die Multiplikation und die Eins sind Koalgebrahomomorphismen.
  • Die folgenden Diagramme kommutieren

Dabei ist die „Flip“-Abbildung, also der kanonische Isomorphismus der Tensorprodukte und angewandt auf .

Die Bialgebren bilden zusammen mit den Abbildungen, die sowohl Algebra- als auch Koalgebrahomomorphismen sind, eine Kategorie.

Verallgemeinerung

Algebren und Koalgebren können in beliebigen monoidalen Kategorien betrachtet werden. Für Kompatibilitätsbedingungen ist es jedoch notwendig, dass auch das Tensorprodukt einer (Ko-)Algebra auf natürliche Weise wieder eine (Ko-)Algebra ist, dies bedingt die Existenz einer Zopfung.

Literatur

  • Christian Kassel: Quantum Groups (Graduate Texts in Mathematics). Springer-Verlag, ISBN 0-387-94370-6
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.