Ausgezeichnete Punkte im Dreieck

In der Geometrie versteht man unter den ausgezeichneten Punkten (auch: merkwürdigen Punkten oder Zentren) eines Dreiecks in erster Linie die folgenden vier Punkte:

Umkreismittelpunkt (blau), Schwerpunkt (grün) und Höhenschnittpunkt (rot) liegen auf einer Geraden

Die drei erstgenannten Schnittpunkte (H, U und S) liegen immer auf einer Geraden, der eulerschen Geraden. Auf ihr, und zwar in der Mitte zwischen H und U, liegt auch der Mittelpunkt des Feuerbachkreises.

Weitere Punkte nach der Encyclopedia of Triangle Centers

Dreieck mit den „klassischen“ ausgezeichneten Punkten und der eulerschen Geraden

Neben den vier „klassischen“ ausgezeichneten Punkten eines Dreiecks (Schwerpunkt, Umkreismittelpunkt, Inkreismittelpunkt, Höhenschnittpunkt), die schon in der Antike bekannt waren, wurden in den letzten Jahrhunderten viele weitere Punkte gefunden und untersucht. Clark Kimberlings Encyclopedia of Triangle Centers (siehe Weblink) führt mehr als 47.000 (Stand 7. März 2022) besondere Punkte und ihre bislang bekannten Eigenschaften auf. Die in diesem Verzeichnis eingeführte Standardbezeichnung, bestehend aus dem Buchstaben X und einem Index, wird heute in vielen Abhandlungen zur Dreiecksgeometrie verwendet. Die folgende Tabelle nennt einige wichtige Beispiele:

Ausgezeichnete Punkte im Dreieck
Inkreismittelpunkt
Schwerpunkt
Umkreismittelpunkt
Höhenschnittpunkt (Orthozentrum)
Mittelpunkt des Feuerbach-Kreises
Lemoine-Punkt (Symmedianenpunkt, Grebe-Punkt)
Gergonne-Punkt
Nagel-Punkt
Mittenpunkt
Spieker-Punkt (Spieker-Zentrum)
Feuerbachpunkt (Berührungspunkt von Inkreis und Feuerbachkreis)
1. Fermat-Punkt (u. a. kürzester Abstand zu allen Eckpunkten)
2. Fermat-Punkt
1. isodynamischer Punkt
2. isodynamischer Punkt
1. Napoleon-Punkt
2. Napoleon-Punkt
Clawson-Punkt
Longchamps-Punkt
Schiffler-Punkt
Exeter-Punkt
Bevan-Punkt
Kosnita-Punkt
Steiner-Punkt
Isoperimetrischer Punkt
Punkt des gleichen Umwegs
1. Vecten-Punkt
2. Vecten-Punkt

Verwandte Themen

Neben Einzelpunkten lassen sich einem Dreieck auch verschiedene Tupel von Punkten zuordnen:

Spezielle Kreise sind:

Weitere spezielle Kegelschnitte sind:

Literatur

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.