Verkettungszeichen
Das Verkettungszeichen (), auch als Kreisoperator bezeichnet, Sprechweise auch Kringel, ist ein mathematisches Zeichen, das die Verkettung zweier Funktionen, Relationen oder Wörter ausdrückt. Besteht keine Verwechslungsgefahr mit der Multiplikation, wird es oft auch weggelassen.
∘ | |
---|---|
Mathematische Zeichen | |
Arithmetik | |
Pluszeichen | + |
Minuszeichen | −, ⁒ |
Malzeichen | ⋅, × |
Geteiltzeichen | :, ÷, / |
Plusminuszeichen | ±, ∓ |
Vergleichszeichen | <, ≤, =, ≥, > |
Wurzelzeichen | √ |
Prozentzeichen | % |
Analysis | |
Summenzeichen | Σ |
Produktzeichen | Π |
Differenzzeichen, Nabla | ∆, ∇ |
Prime | ′ |
Partielles Differential | ∂ |
Integralzeichen | ∫ |
Verkettungszeichen | ∘ |
Unendlichzeichen | ∞ |
Geometrie | |
Winkelzeichen | ∠, ∡, ∢, ∟ |
Senkrecht, Parallel | ⊥, ∥ |
Dreieck, Viereck | △, □ |
Durchmesserzeichen | ⌀ |
Mengenlehre | |
Vereinigung, Schnitt | ∪, ∩ |
Differenz, Komplement | ∖, ∁ |
Elementzeichen | ∈ |
Teilmenge, Obermenge | ⊂, ⊆, ⊇, ⊃ |
Leere Menge | ∅ |
Logik | |
Folgepfeil | ⇒, ⇔, ⇐ |
Allquantor | ∀ |
Existenzquantor | ∃ |
Konjunktion, Disjunktion | ∧, ∨ |
Negationszeichen | ¬ |
Verwendung
Verkettung von Funktionen
Das Verkettungszeichen wird häufig als mathematischer Operator für die Hintereinanderausführung von Funktionen verwendet. Sind Mengen und sowie Funktionen, dann wird die Verkettung von und durch
notiert. Der Ausdruck „“ wird als „ verknüpft mit “, „ komponiert mit “, „ nach “ oder „ Kringel “ gelesen.[1][2][3] Bei der Notation ist darauf zu achten, dass die Komposition von rechts nach links durchgeführt wird, das heißt erst und dann angewandt wird. Gelegentlich wird in der Literatur allerdings auch die umgekehrte Reihung verwendet und geschrieben.
Verkettung von Relationen
Allgemeiner wird das Verkettungszeichen als Operator für die Verkettung binärer Relationen verwendet. Sind wieder Mengen und sowie binäre Relationen, dann wird die Verkettung von und durch
notiert. Das Resultat nennt man Relationsprodukt oder relatives Produkt. Auch hier wird gelegentlich die umgekehrte Reihung verwendet.
Verkettung von Wörtern
In der theoretischen Informatik wird das Verkettungszeichen für die Konkatenation von Wörtern verwendet. Sind und zwei Wörter über einem Alphabet, dann wird die Konkatenation von und durch
notiert. Hierbei ist das Präfix und das Suffix des Resultats der Konkatenation. Die Konkatenation von Wörtern ist dabei ein Spezialfall einer Konkatenation von Mengen.
Binäre Verknüpfungen
Noch allgemeiner wird das Verkettungszeichen manchmal neben den Zeichen , und als Platzhalter für binäre Verknüpfungen allgemeiner algebraischer Strukturen eingesetzt.
Darstellung auf dem Computer
Kodierung
Das Verkettungszeichen wird folgendermaßen definiert und kodiert:
Zeichen | Unicode | Bezeichnung | HTML | LaTeX | |||
---|---|---|---|---|---|---|---|
Position | Bezeichnung | hexadezimal | dezimal | benannt | |||
∘ | U+2218 |
ring operator | Kreisoperator | ∘ |
∘ |
\circ |
Ähnliche Zeichen
Zeichen | Unicode | Name | |
---|---|---|---|
Position | Bezeichnung | ||
o | U+006F |
latin small letter o | Lateinischer Kleinbuchstabe o |
° | U+00B0 |
degree sign | Gradzeichen |
ο | U+03BF |
greek small letter omicron | Griechischer Kleinbuchstabe ο |
о | U+043E |
cyrillic small letter о | Kyrillischer Kleinbuchstabe о |
ₒ | U+2092 |
latin subscript small letter o | Tiefgestellter lateinischer Kleinbuchstabe o |
○ | U+25CB |
white circle | Weißer Kreis |
◦ | U+25E6 |
white bullet | Weißes Aufzählungszeichen |
⚬ | U+26AC |
medium small white circle | Mittlerer kleiner weißer Kreis |
。 | U+3002 |
ideographic full stop | Satzende in CJK-Schriftarten |
Einzelnachweise
- Gerd Fischer: Lineare Algebra. Springer, 2009, S. 36.
- Ehrhard Behrends: Analysis Band 1. Springer, 2014, S. 19.
- Georg Hoever: Höhere Mathematik kompakt. Springer, 2013, S. 43.