স্ট্রনশিয়াম

স্ট্রনশিয়াম একটি রাসায়নিক মৌল যার প্রতীক Sr এবং পারমাণবিক সংখ্যা ৩৮। এটি মৃৎক্ষার ধাতু। স্ট্রনশিয়াম একটি নরম রৌপ্য-সাদা হলুদ বর্ণের ধাতু যা রাসায়নিকভাবে অত্যন্ত সক্রিয়। বাতাসের সংস্পর্শে ধাতুটির গায়ে গাঢ় অক্সাইডের স্তর তৈরি হয়। স্ট্রনশিয়ামের পর্যায় সারণীতে ক্যালসিয়াম এবং বেরিয়ামের দুটি উল্লম্ব প্রতিবেশীর মতো ভৌত এবং রাসায়নিক বৈশিষ্ট্য রয়েছে। এটি মূলত খনিজ সেলস্টাইন এবং স্ট্রন্টিয়ানাইটে প্রাকৃতিকভাবে ঘটে এবং বেশিরভাগক্ষেত্রে এগুলি থেকে খনন করা হয়। প্রাকৃতিক স্ট্রন্টিয়াম স্থিতিশীল হলেও কৃত্রিম 90Sr আইসোটোপটি তেজস্ক্রিয় এবং পারমাণবিক পতনের সবচেয়ে বিপজ্জনক উপাদানগুলির মধ্যে একটি, কারণ স্ট্রনশিয়ামের শরীর দ্বারা ক্যালসিয়ামের মতো একইভাবে শোষিত হয়। অন্যদিকে প্রাকৃতিকভাবে স্থিতিশীল স্ট্রনশিয়াম স্বাস্থ্যের পক্ষে তেমন বিপজ্জনক নয়।

স্ট্রনশিয়াম   ৩৮Sr
পরিচয়
নাম, প্রতীকস্ট্রনশিয়াম, Sr
উচ্চারণ/ˈstrɒnʃiəm/
STRON-shee-əm;
/ˈstrɒntiəm/
STRON-tee-əm;
/ˈstrɒnʃəm/ STRON-shəm
উপস্থিতিরৌপ্য-সাদা ধাতব বর্ণে হলুদ আভা
পর্যায় সারণীতে স্ট্রনশিয়াম
হাইড্রোজেন (other non-metal)
হিলিয়াম (noble gas)
লিথিয়াম (alkali metal)
বেরিলিয়াম (alkaline earth metal)
বোরন (metalloid)
কার্বন (other non-metal)
নাইট্রোজেন (other non-metal)
অক্সিজেন (other non-metal)
ফ্লোরিন (halogen)
নিয়ন (noble gas)
সোডিয়াম (alkali metal)
ম্যাগনেসিয়াম (alkaline earth metal)
অ্যালুমিনিয়াম (post-transition metal)
সিলিকন (metalloid)
ফসফরাস (other non-metal)
সালফার (other non-metal)
ক্লোরিন (halogen)
আর্গন (noble gas)
পটাশিয়াম (alkali metal)
ক্যালসিয়াম (alkaline earth metal)
স্ক্যানডিয়াম (transition metal)
টাইটানিয়াম (transition metal)
ভ্যানাডিয়াম (transition metal)
ক্রোমিয়াম (transition metal)
ম্যাঙ্গানিজ (transition metal)
লোহা (transition metal)
কোবাল্ট (transition metal)
নিকেল (transition metal)
তামা (transition metal)
দস্তা (transition metal)
গ্যালিয়াম (post-transition metal)
জার্মেনিয়াম (metalloid)
আর্সেনিক (metalloid)
সেলেনিয়াম (other non-metal)
ব্রোমিন (halogen)
ক্রিপ্টন (noble gas)
রুবিডিয়াম (alkali metal)
স্ট্রনসিয়াম (alkaline earth metal)
ইটরিয়াম (transition metal)
জিরকোনিয়াম (transition metal)
নাইওবিয়াম (transition metal)
মলিবডিনাম (transition metal)
টেকনিসিয়াম (transition metal)
রুথেনিয়াম (transition metal)
রোহডিয়াম (transition metal)
প্যালাডিয়াম (transition metal)
রুপা (transition metal)
ক্যাডমিয়াম (transition metal)
ইন্ডিয়াম (post-transition metal)
টিন (post-transition metal)
অ্যান্টিমনি (metalloid)
টেলুরিয়াম (metalloid)
আয়োডিন (halogen)
জেনন (noble gas)
সিজিয়াম (alkali metal)
বেরিয়াম (alkaline earth metal)
ল্যান্থানাম (lanthanoid)
সিরিয়াম (lanthanoid)
প্রাসিওডিমিয়াম (lanthanoid)
নিওডিমিয়াম (lanthanoid)
প্রমিথিয়াম (lanthanoid)
সামারিয়াম (lanthanoid)
ইউরোপিয়াম (lanthanoid)
গ্যাডোলিনিয়াম (lanthanoid)
টারবিয়াম (lanthanoid)
ডিসপ্রোসিয়াম (lanthanoid)
হলমিয়াম (lanthanoid)
এরবিয়াম (lanthanoid)
থুলিয়াম (lanthanoid)
ইটারবিয়াম (lanthanoid)
লুটেসিয়াম (lanthanoid)
হ্যাফনিয়াম (transition metal)
ট্যানটালাম (transition metal)
টাংস্টেন (transition metal)
রিনিয়াম (transition metal)
অসমিয়াম (transition metal)
ইরিডিয়াম (transition metal)
প্লাটিনাম (transition metal)
সোনা (transition metal)
পারদ (transition metal)
থ্যালিয়াম (post-transition metal)
সীসা (post-transition metal)
বিসমাথ (post-transition metal)
পোলোনিয়াম (post-transition metal)
এস্টাটিন (halogen)
রেডন (noble gas)
ফ্রান্সিয়াম (alkali metal)
রেডিয়াম (alkaline earth metal)
অ্যাক্টিনিয়াম (actinoid)
থোরিয়াম (actinoid)
প্রোটেক্টিনিয়াম (actinoid)
ইউরেনিয়াম (actinoid)
নেপচুনিয়াম (actinoid)
প্লুটোনিয়াম (actinoid)
অ্যামেরিসিয়াম (actinoid)
কুরিয়াম (actinoid)
বার্কেলিয়াম (actinoid)
ক্যালিফোর্নিয়াম (actinoid)
আইনস্টাইনিয়াম (actinoid)
ফার্মিয়াম (actinoid)
মেন্ডেলেভিয়াম (actinoid)
নোবেলিয়াম (actinoid)
লরেনসিয়াম (actinoid)
রাদারফোর্ডিয়াম (transition metal)
ডুবনিয়াম (transition metal)
সিবোরজিয়াম (transition metal)
বোহরিয়াম (transition metal)
হ্যাসিয়াম (transition metal)
মিটনেরিয়াম (unknown chemical properties)
ডার্মস্টেটিয়াম (unknown chemical properties)
রন্টজেনিয়াম (unknown chemical properties)
কোপার্নিসিয়াম (transition metal)
ইউনুনট্রিয়াম (unknown chemical properties)
ফেরোভিয়াম (unknown chemical properties)
ইউনুনপেন্টিয়াম (unknown chemical properties)
লিভেরমোরিয়াম (unknown chemical properties)
ইউনুনসেপটিয়াম (unknown chemical properties)
ইউনুনকটিয়াম (unknown chemical properties)
Ca

Sr

Ba
রুবিডিয়ামস্ট্রনশিয়ামইট্রিয়াম
পারমাণবিক সংখ্যা38
আদর্শ পারমাণবিক ভর87.62
মৌলের শ্রেণীমৃৎ ক্ষার ধাতু
শ্রেণী, পর্যায়, ব্লক, পর্যায় , s-ব্লক
ইলেকট্রন বিন্যাস[Kr] 5s2
per shell: 2, 8, 18, 8, 2
ভৌত বৈশিষ্ট্য
দশাকঠিন
গলনাঙ্ক1050 কে (777 °সে, 1431 °ফা)
স্ফুটনাঙ্ক1655 K (1382 °সে, 2520 °ফা)
ঘনত্ব (ক.তা.-র কাছে)2.64 g·cm−৩ (০ °সে-এ, ১০১.৩২৫ kPa)
তরলের ঘনত্বm.p.: 2.375 g·cm−৩
ফিউশনের এনথালপি7.43 kJ·mol−১
বাষ্পীভবনের এনথালপি136.9 kJ·mol−১
তাপ ধারকত্ব26.4 J·mol−১·K−১
বাষ্প চাপ
P (Pa) ১০ ১০০  k ১০ k ১০ k
at T (K) 796 882 990 1139 1345 1646
পারমাণবিক বৈশিষ্ট্য
জারণ অবস্থা2, 1[1] (strongly basic oxide)
তড়িৎ-চুম্বকত্ব0.95 (পলিং স্কেল)
পারমাণবিক ব্যাসার্ধempirical: 215 pm
সমযোজী ব্যাসার্ধ195±10 pm
ভ্যান ডার ওয়ালস ব্যাসার্ধ249 pm
বিবিধ
কেলাসের গঠন face-centered cubic (fcc)
Face-centered cubic  জন্য কেলাসের গঠন{{{name}}}
তাপীয় প্রসারাঙ্ক22.5 µm·m−১·K−১ (২৫ °সে-এ)
তাপীয় পরিবাহিতা35.4 W·m−১·K−১
তড়িৎ রোধকত্ব ও পরিবাহিতা২০ °সে-এ: 132 n Ω·m
চুম্বকত্বপ্যারাচৌম্বক
কৃন্তন গুণাঙ্ক6.1 GPa
পোয়াসোঁর অনুপাত0.28
(মোজ) কাঠিন্য1.5
ক্যাস নিবন্ধন সংখ্যা7440-24-6
সবচেয়ে স্থিতিশীল আইসোটোপ
মূল নিবন্ধ: স্ট্রনশিয়ামের আইসোটোপ
iso NA অর্ধায়ু DM DE (MeV) DP
82Sr syn 25.36 d ε - 82Rb
83Sr syn 1.35 d ε - 83Rb
β+ 1.23 83Rb
γ 0.76, 0.36 -
84Sr 0.56% Sr 46টি নিউট্রন নিয়ে স্থিত হয়
85Sr syn 64.84 d ε - 85Rb
γ 0.514D -
86Sr 9.86% Sr 48টি নিউট্রন নিয়ে স্থিত হয়
87Sr 7.0% Sr 49টি নিউট্রন নিয়ে স্থিত হয়
88Sr 82.58% Sr 50টি নিউট্রন নিয়ে স্থিত হয়
89Sr syn 50.52 d ε 1.49 89Rb
β 0.909D 89Y
90Sr trace 28.90 y β 0.546 90Y

স্ট্রনশিয়াম এবং স্ট্রন্টিয়ানাইট উভয়ের নামকরণ করা হয়েছে স্ট্রনশিয়ান নামে স্কটল্যান্ডের একটি গ্রাম থেকে, যার কাছাকাছি অ্যাডায়ার ক্রফোর্ড এবং উইলিয়াম ক্রিকশঙ্ক কর্তৃক খনিজটি আবিষ্কার করা হয়েছিল ১৭৯০ সালে। পরের বছর এটির ক্রিমসন-লাল শিখা পরীক্ষার রঙ থেকে এটি একটি নতুন উপাদান হিসাবে চিহ্নিত হয়েছিল। তড়িৎবিশ্লেষণের তৎক্ষণাত আবিষ্কৃত প্রক্রিয়াটি ব্যবহার করে স্ট্রনশিয়ামটি ১৮০৮ সালে হামফ্রে ডেভি প্রথম ধাতব হিসেবে উল্লেখ করেন। উনিশ শতকে স্ট্রনশিয়াম বেশিরভাগ ক্ষেত্রে চিনির বীট থেকে চিনির উৎপাদনে ব্যবহৃত হত। টেলিভিশন ক্যাথোড রশ্মির টিউবগুলির উৎপাদনের শীর্ষে থাকা মার্কিন যুক্তরাষ্ট্রে স্ট্রনশিয়ামের ৭৫ শতাংশই ফেসপ্লেট গ্লাসের জন্য ব্যবহৃত হত। অন্যান্য প্রদর্শন পদ্ধতিতে ক্যাথোড রশ্মি টিউবগুলির প্রতিস্থাপনের সাথে সাথে স্ট্রনশিয়ামের ব্যবহার নাটকীয়ভাবে হ্রাস পেয়েছে।

বৈশিষ্ট্য

শাখাযুক্ত স্ট্রনশিয়ামের জারিত অবস্থা

একটি ফ্যাকাশে হলুদ বর্ণের সাথে একটি দ্বিযোজী রৌপ্য ধাতু যার বৈশিষ্ট্যগুলি বেশিরভাগ মধ্যবর্তী এবং এর গ্র‌ুপ প্রতিবেশী ক্যালসিয়াম এবং বেরিয়ামের সমতুল্য।[2] এটি ক্যালসিয়ামের চেয়ে নরম এবং বেরিয়ামের চেয়ে শক্ত। এর গলনাঙ্ক (৭৭৭ °C) এবং ফুটনাঙ্ক (১৬৬৫°C) এর মান ক্যালসিয়ামের (যথাক্রমে ৭৪২°C এবং ১৭৫৭ °C) থেকে কম; বেরিয়ামের গলনাঙ্ক (৭২৭°C) নিম্নগতির এই ধারা অব্যাহত রেখেছে, তবে স্ফ‌ুটনাঙ্কের মান (২১৭০°C) নয়। স্ট্রনশিয়ামের ঘনত্ব (২.৬৪ g/cm3) একইভাবে ক্যালসিয়াম (১.৫৪ g/cm3) এবং বেরিয়ামের (৩.৫৯৪ g/cm3) মধ্যে মধ্যবর্তী হয়।[3] ২৩৫ এবং ৫৪০ ডিগ্রি সেন্টিগ্রেডে রূপান্তর মান সহ ধাতব স্ট্রনশিয়ামের তিনটি বহুরূপতা বিদ্যমান।

স্ট্রনশিয়াম এর ইলেক্ট্রন বিন্যাস

Sr2+/Sr যুগলের জন্য স্ট্যান্ডার্ড ইলেক্ট্রোড সম্ভাবনা −২.৮৯ V, যা প্রায় Ca2+/Ca (−২.৮৪ V) এবং Ba2+/Ba (−২.৯২ V) যুগলর মধ্যবর্তী, এবং প্রতিবেশী ক্ষারীয় ধাতবগুলির কাছাকাছি।[4] স্ট্রনশিয়াম পানির প্রতি তার ক্রিয়াশীলতায় ক্যালসিয়াম এবং বেরিয়ামের মধ্যবর্তী হয়, যার সাহায্যে এটি স্ট্রনশিয়াম হাইড্রোক্সাইড এবং হাইড্রোজেন গ্যাস উৎপাদন করা হয়। স্ট্রনশিয়াম ধাতু বাতাসের সাথে দহন বিক্রিয়া করে স্ট্রনশিয়াম অক্সাইড এবং স্ট্রনশিয়াম নাইট্রাইড তৈরি করতে পারে তবে যেহেতু এটি ঘরের তাপমাত্রায় ৩৮০ ডিগ্রি সেন্টিগ্রেডের নিচে নাইট্রোজেনের সাথে প্রতিক্রিয়া দেখায় না, এটি কেবল অক্সাইডকে স্বতঃস্ফ‌ূর্তভাবে গঠন করে। সাধারণ অক্সাইড SrO ছাড়াও পারক্সাইড SrO2 অক্সিজেনের উচ্চ চাপের মধ্যে স্ট্রনশিয়াম ধাতুর প্রত্যক্ষ জারণ দ্বারা তৈরি করা যেতে পারে এবং এটি হলুদ সুপার অক্সাইড Sr(O2)2.[5] তৈরিরও কিছু প্রমাণ রয়েছে। স্ট্রনশিয়াম হাইড্রোক্সাইড, Sr(OH)2 একটি শক্তিশালী ক্ষার, যদিও এটি বেরিয়াম বা অন্যান্য ক্ষারীয় ধাতুর হাইড্রক্সাইডের মতো শক্তিশালী নয়।[6] স্ট্রনশিয়ামের চারটি ডাইহ্যালাইড আছে বলে জানা যায়।[7] স্ট্রনশিয়িয়াম সহ ভারী s-ব্লক উপাদানগুলির বৃহৎ আকারের কারণে ২, ৩ বা ৪ থেকে অনেক ক্ষেত্রে SrCd11 এবং SrZn13পর্যন্ত বিস্ত‌ৃত যোজত্যার সংখ্যা পাওয়া যায়। Sr2+ আয়নটি বেশ বড়, যাতে উচ্চ যোজত্যার সংখ্যাগুলি নিয়ম মানে।[8] স্ট্রনশিয়াম এবং বেরিয়ামের বৃহৎ আকার পলিডেন্টেট ম্যাক্রোসাইক্লিক লিগ্যান্ড যেমন ক্রাউন ইথারস সহ স্ট্রনশিয়াম কমপ্লেক্সগুলিকে স্থিতিশীল করতে গুরুত্বপূর্ণ ভূমিকা পালন করে: উদাহরণস্বরূপ, যখন ১৮-ক্রাউন-৬ ক্যালসিয়াম এবং ক্ষার ধাতুগুলির সাথে তুলনামূলকভাবে দুর্বল কমপ্লেক্স গঠন করে, তখন এর স্ট্রনশিয়াম এবং বেরিয়াম কমপ্লেক্সগুলি থাকে অনেক শক্তিশালী।[9] অর্গানোস্ট্রনশিয়াম যৌগগুলিতে এক বা একাধিক স্ট্রনশিয়াম — কার্বন বন্ড থাকে। এগুলি বারবিয়ের ধরনের রাসায়নিক বিক্রিয় দেয় ।[10][11][12] যদিও স্ট্রনশিটিয়াম ম্যাগনেসিয়ামের মতো একই গ্রুপে রয়েছে, এবং অর্গানোমেগনেসিয়াম যৌগিকগুলি খুব সাধারণভাবে রসায়ন জুড়ে ব্যবহৃত হয়, অর্গানোস্ট্রনশিয়াম যৌগগুলি একইভাবে ব্যাপক ব্যবহৃত হয় না কারণ এগুলি তৈরি করা আরও কঠিন এবং আরও প্রতিক্রিয়াশীল। এই উপাদানগুলির একই রকম আয়নিক ব্যসার্ধের কারণে অর্গানোস্ট্রনশিয়াম যৌগগুলি অর্গানিউরোপিয়াম বা অর্গানোসামেরিয়াম যৌগগুলির সাথে বেশি মিল থাকে (Sr2+ 118 pm; Eu2+ 117 pm; Sm2+ 122 pm)। এই যৌগগুলির বেশিরভাগ কেবল কম তাপমাত্রায় প্রস্তুত করা যেতে পারে; বিশাল লিগ্যান্ড স্থিতিশীলতার পক্ষে থাকে। উদাহরণস্বরূপ, স্ট্রনশিয়াম ডাইসাইক্লোপেনাডিয়েনিয়াল, Sr(C5H5)2 অবশ্যই মুরুরোসিন বা সাইক্লোপেন্টাডেইনের সাথে স্ট্রনশিয়াম ধাতুটির সরাসরি বিক্রিয়া করে তৈরি করা উচিত; অন্যদিকে বাল্কিয়ার C5H5 লিগ্যান্ডের সাথে C5(CH3)5 লিগ্যান্ড প্রতিস্থাপনের ফলে যৌগের দ্রবণীয়তা, উদ্বায়িতা এবং গতিশীল স্থিতিশীলতা বৃদ্ধি পায়।[13] অক্সিজেন এবং পানির সাথে এর চরম প্রতিক্রিয়াশীলতার কারণে, স্ট্রনশিয়ামটি কেবলমাত্র অন্যান্য উপাদানগুলির সাথে যৌগ আকারে থাকে যেমন খনিজগুলি স্ট্রনশিয়ানাইট এবং সেলস্টাইন হিসাবে। জারণ রোধ করতে এটি একটি তরল হাইড্রোকার্বনের মতো খনিজ তেল বা কেরোসিনের নিচে রাখা হয়; তাজা উদ্ভাসিত স্ট্রনশিয়াম ধাতু অক্সাইড গঠনের সাথে সাথে একটি হলুদ বর্ণকে দ্রুত পরিবর্তন করে। সূক্ষ্মভাবে গুঁড়ো স্ট্রনশিয়াম ধাতু পাইরোফোরিক, এর অর্থ এটি ঘরের তাপমাত্রায় বাতাসে স্বতঃস্ফূর্তভাবে জ্বলবে। উদ্বায়ী স্ট্রনশিয়াম লবণের শিখাগুলিতে একটি উজ্জ্বল লাল রঙ তৈরি করে এবং এই লবণ পাইরোটেকনিকসে এবং শিখা তৈরিতে ব্যবহৃত হয়।[3] ক্যালসিয়াম এবং বেরিয়ামের পাশাপাশি ক্ষারীয় ধাতু এবং দ্বিযোজী ল্যান্থানাইডস ইউরোপিয়াম এবং ইটারবিয়ামের মতো স্ট্রনশিয়াম ধাতু একটি গাঢ় নীল দ্রবণ তৈরি করার জন্য তরল অ্যামোনিয়াতে সরাসরি দ্রবীভূত করা হয়।[2]

আইসোটোপ

স্ট্রনশিয়ামের মোট কুড়িটি আইসোটোপ রয়েছে। চারটি স্থায়ী এবং ষোলটি অস্থায়ী। স্ট্রনশিয়ামের চারটি স্থিতিশীল আইসোটোপগুলি হল: 84Sr, 86Sr, 87Sr এবং 88Sr।[3] তাদের প্রাচুর্য ক্রমবর্ধমান গণসংখ্যার সাথে বৃদ্ধি পায় এবং সবচেয়ে ভারী, 84Sr, সমস্ত প্রাকৃতিক স্ট্রনশিয়ামের প্রায় ৮২.৬% তৈরি করে, যদিও দীর্ঘকালীন বিটা-ক্ষয়কারী 87Sr রুবিডিয়ামের অপত্য উপাদান হিসাবে রেডিওজেনিক 84Sr উৎপাদনের কারণে এর মান প্রচুর পরিমাণে পরিবর্তিত হয়।[14] উদ্বায়ী আইসোটোপগুলির মধ্যে, 85 এর চেয়ে কম হালকা আইসোটোপগুলির প্রাথমিক ক্ষয় মোডটি হল রুবিডিয়ামের আইসোটোপগুলিতে ইলেক্ট্রন ক্যাপচার বা পজিট্রন নিঃসরণ এবং 88Sr এর চেয়ে বেশি ভারী আইসোটোপগুলির মধ্যে ইট্রিয়ামের আইসোটোপগুলিতে বৈদ্যুতিন নির্গমন হয়। বিশেষ দ্রষ্টব্য 89Sr এবং 90Sr। প্রথমটির অর্ধজীবন ৫০.৬ দিন থাকে এবং স্ট্রনশিয়ামের রাসায়নিক মিলের কারণে হাড়ের ক্যান্সারের চিকিত্সার জন্য এবং ক্যালসিয়াম প্রতিস্থাপনের ক্ষমতাকে ব্যবহার করা হয়।[15][16] যদিও 90Sr (আধা-জীবন ২৮.৯০ বছর) একইভাবে ব্যবহৃত হয়েছে, এটি বিচ্ছেদ পণ্য হিসাবে উৎপাদনের কারণে পারমাণবিক অস্ত্র এবং পারমাণবিক দুর্ঘটনা থেকে পড়ে যাওয়ার উদ্বেগের একটি মূল বিষয়ও বটে। হাড়গুলিতে এটির উপস্থিতি হাড়ের ক্যান্সার, কাছের টিস্যুগুলির ক্যান্সার এবং লিউকেমিয়া সৃষ্টি করতে পারে।[17] ১৯৮৬ সালের চেরনোবিল পারমাণবিক দুর্ঘটনা 90Sr এর সাথে 10 kBq/m2 এরও বেশি প্রায় ৩০,০০০ কিলোমিটার দূষিত করেছিল, যা 90Sr এর মূল সন্ধানের ৫% অবদান রাখে।[18]

ইতিহাস

স্ট্রনশিয়ামের নামকরণ করা হয়েছে স্কটিশ গ্রাম স্ট্রনশিয়ান ( গ্যালিক স্রান আ টি-সাথিন) এর নামানুসারে, যেখানে এটি সীসা খনিগুলির আকরিকগুলিতে আবিষ্কৃত হয়েছিল। .[19] থমাস চার্লস হোপ মূলত উপাদানটির নাম স্ট্রনশিয়ানাইট রাখেন, তবে নামটি সংক্ষিপ্ত করে স্ট্রনশিয়ামে নামকরণ করা হয়। [20]

১৯৯০ সালে অ্যাডায়ার ক্রফোর্ড নামে একজন চিকিৎসক বেরিয়াম প্রস্তুত করার কাজে নিযুক্ত ছিলেন এবং তার সহকর্মী উইলিয়াম ক্রিকশাঙ্ক স্বীকৃতি দিয়েছিলেন যে স্ট্রনশিয়ান আকরিক বৈশিষ্ট্যগুলি অন্যান্য "ভারী স্পার" উৎসগুলির চেয়ে পৃথককৃত বৈশিষ্ট্য প্রদর্শন করে।[21] এটি অ্যাডাইরকে ৩৫৫ পৃষ্ঠায় উপস্থাপনের অনুমতি দিয়েছে "... এটি অবশ্যই সম্ভাব্য যে স্কচ মিনারেল পৃথিবীর একটি নতুন প্রজাতি যা এখনও পর্যন্ত পর্যাপ্তভাবে পরীক্ষা করা হয়নি" " চিকিৎসক এবং খনিজ সংগ্রাহক ফ্রেডরিখ গ্যাব্রিয়েল সুলজার স্ট্রনশিয়ানের খনিজ জোহান ফ্রেডরিক ব্লুমেনবাচের সাথে একত্র হয়ে বিশ্লেষণ করেছিলেন এবং এর নাম দিয়েছেন স্ট্রনশিয়ানাইট। তিনি এই সিদ্ধান্তেও পৌঁছেছিলেন যে এটি ওয়াইটাইট থেকে পৃথক এবং এতে একটি নতুন পৃথিবী রয়েছে (নিউ গ্রুন্ডারেড)।[22] ১৭৯৩ সালে গ্লাসগো বিশ্ববিদ্যালয়ের রসায়ন বিভাগের অধ্যাপক টমাস চার্লস হোপ স্ট্রন্টাইট নাম প্রস্তাব করেছিলেন।[23][24][25][26] তিনি ক্রফোর্ডের পূর্বের কাজটি নিশ্চিত করেছেন এবং বলেছিলেন: "... এটিকে একটি অদ্ভ‌ুত পৃথিবী হিসাবে বিবেচনা করে আমি এটির একটি নাম দেওয়া জরুরি বলে মনে করেছি। যে জায়গাটি পাওয়া গেছে, সেখান থেকে আমি এটিকে স্ট্রন্টাইটস বলেছি; এটি যে কোনও মানের অধিকারের মতো সম্পূর্ণ ততটাই যথাযথ, যা বর্তমান ফ্যাশন"। ১৮৮৮ সালে স্যার হামফ্রে ডেভির মাধ্যমে স্ট্রনশিয়াম ক্লোরাইড এবং মার্কারিক অক্সাইডযুক্ত মিশ্রণের তড়িৎ বিশ্লেষণের মাধ্যমে এই উপাদানটি শেষ পর্যন্ত বিচ্ছিন্ন করা হয় এবং ৩০ জুন ১৮০৮ সালে রয়্যাল সোসাইটির একটি বক্তৃতায় তাঁর দ্বারা ঘোষণা করা হয়।[27] অন্যান্য মৃতক্ষার ধাতুর নামকরণের সাথে তাল মিলিয়ে তিনি নামটি স্ট্রনশিয়ামে রেখেছিলেন। [28][29][30][31][32] ১৮৭০ এর দশকের গোড়ার দিকে এই প্রক্রিয়াটির উন্নতির সাথে সাথে এটির বৃহত আকারে পরিচিতি আসে। জার্মান চিনি শিল্প এই প্রক্রিয়াটি ২০ শতকেও ব্যবহার করেছে। প্রথম বিশ্বযুদ্ধের আগে বিট চিনি শিল্প এই প্রক্রিয়াটির জন্য প্রতি বছর ১০০,০০০ থেকে ১৫০,০০০ টন স্ট্রনশিয়াম হাইড্রক্সাইড ব্যবহার করে।[33] প্রক্রিয়াটিতে স্ট্রনশিয়ামিয়াম হাইড্রোক্সাইড পুনর্ব্যবহার করা হয়েছিল, তবে উৎপাদনের সময় লোকসান প্রতিস্থাপনের চাহিদা মন্টেরল্যান্ডে স্ট্রনশিয়ানাইটের খনন শুরু করার জন্য উল্লেখযোগ্য চাহিদা তৈরি করার জন্য যথেষ্ট ছিল। গ্লৌচেস্টারশায়ারে সেলাস্টাইন জমার খনির কাজ শুরু হলে জার্মানিতে স্ট্রনশিয়ানাইটের খনির কাজ শেষ হয়েছিল।.[34] এই খনিগুলি ১৮৮৪ থেকে ১৯৪১ সাল পর্যন্ত বিশ্বে সর্বাধিক সরবরাহ করেছিল। যদিও গ্রানাডা অববাহিকায় সেলাস্টাইন জমা ছিল কিছু সময়ের জন্য জানা ছিল কিন্তু বড় আকারের খনির কাজগুলি ১৯৫০ সালের আগে শুরু হয় নি।[35] বায়ুমণ্ডলীয় পারমাণবিক অস্ত্র পরীক্ষার সময়, এটি পর্যবেক্ষণ করা হয়েছিল যে স্ট্রনশিয়াম -৯০ একটি তুলনামূলকভাবে উচ্চ ফলনযুক্ত পারমাণবিক ফিশন পণ্যগুলির মধ্যে একটি। ক্যালসিয়ামের সাদৃশ্য এবং স্ট্রনশিয়াম-৯০ হাড়গুলিতে সমৃদ্ধ হওয়ার সম্ভাবনা স্ট্রনশিয়ামের বিপাক নিয়ে গবেষণাকে একটি গুরুত্বপূর্ণ বিষয় হিসেবে তৈরি করে ।[36][37]

প্রাপ্তি

সেলেস্টাইন খনিজ (SrSO4)

স্ট্রনশিয়ামটি সাধারণত প্রকৃতি থেকে পাওয়া যায় যা পৃথিবীর ১৫তম প্রচুর উপাদান (এর ভারী কনজেনার বেরিয়াম ১৪তম), পৃথিবীর ভূত্বকটিতে প্রতি মিলিয়নে গড়ে প্রায় ৩৬০টি অংশের প্রাপ্তি অনুমান করা হয়।[38] এবং প্রধানত সালফেট খনিজ সেলস্টাইন (SrSO4) এবং কার্বনেট স্ট্রোথানাইট (SrCO3) হিসাবে পাওয়া যায় । দুটির মধ্যে খনির জন্য পর্যাপ্ত আকারের আমানতে সেলস্টাইন বেশি পাওয়া যায়। যেহেতু স্ট্রনশিয়িয়ামটি প্রায়শই কার্বনেট আকারে ব্যবহৃত হয়, তাই স্ট্রোথানাইটাইট দুটি সাধারণ খনিজগুলির জন্য আরও কার্যকর হবে তবে কয়েকটি জমার সন্ধান পাওয়া গেছে যা উন্নয়নের জন্য উপযুক্ত।[39] ভূগর্ভস্থ জলের স্ট্রনশিয়াম অনেকটা ক্যালসিয়ামের মতো রাসায়নিকভাবে আচরণ করে। মধ্যবর্তী থেকে অম্লধর্মী পিএইচ ধারী Sr2+ হল প্রভাবশালী স্ট্রনশিয়াম প্রজাতি। ক্যালসিয়াম আয়নগুলির উপস্থিতিতে স্ট্রনশিয়াম সাধারণত বর্ধিত পিএইচ-এ ক্যালসাইট এবং অ্যানহাইড্রাইটের মতো ক্যালসিয়াম খনিজগুলির সাথে কপিরসিপিটেটস গঠন করে। মধ্যবর্তী থেকে অম্লধর্মী দ্রবীভূত স্ট্রনশিয়ামটি আয়ন বিনিময় প্রক্রিয়ার মাধ্যমে মাটির কণায় আবদ্ধ থাকে।[40]

সমুদ্রের জলের গড় স্ট্রনশিয়ামের পরিমাণটি ৮মিলিগ্রাম/লি।[41][42] স্ট্রনশিয়ামের ৮২ থেকে ৯০ মোল/লি এর মধ্যে ঘনত্বের মানটি ক্যালসিয়ামের ঘনত্বের তুলনায় যথেষ্ট কম, যা সাধারণত ৯.৬ এবং ১১.৬ মিমি / লি এর মধ্যে থাকে।[41][42] তবুও এটি বেরিয়ামের তুলনায় অনেক বেশি ১৩ μg/l।[3]

উৎপাদন

Grey and white world map with China colored green representing 50%, Spain colored blue-green representing 30%, Mexico colored light blue representing 20%, Argentina colored dark blue representing below 5% of strontium world production.
২০১৪ সালে স্ট্রনশিয়াম উৎপাদক [43]

২০১৫ সালের হিসাবে সেলাস্টাইন হিসাবে স্ট্রনশিয়ামের তিনটি প্রধান উৎপাদক দেশ হলো চীন (১৫০,০০০ টন), স্পেন (৯০,০০০ টন), এবং মেক্সিকো (৭০,০০০ টন); আর্জেন্টিনা (১০,০০০ টন) এবং মরোক্কো (২,৫০০ টন) ছোট উৎপাদনকারী। যদিও স্ট্রনশিয়ামের আমানত যুক্তরাষ্ট্রে সবচেয়ে বেশি, ১৯৫৯ সাল থেকে এগুলি খনন করা হয়নি।[43] খনিজ সেলস্টাইনের (SrSO4) একটি বড় আংশ দুটি প্রক্রিয়া দ্বারা কার্বনেটে রূপান্তরিত করা হয়। হয় সেলস্টাইন সোডিয়াম কার্বনেট দ্রবণের সাথে সরাসরি যুক্ত করা হয় বা সালফাইড গঠনের জন্য সেলস্টাইন কয়লা দিয়ে দহন করা হয়। দ্বিতীয় পর্যায়ে স্ট্রনশিয়াম সালফাইড নামক একটি গাঢ় বর্ণের উপাদান তৈরি হয়। এই তথাকথিত "কালো ছাই" জলে দ্রবীভূত এবং ফিল্টার হয়। স্ট্রনশিয়াম সালফাইড দ্রবণে কার্বন ডাই অক্সাইড যুক্ত করার মাধ্যমে স্ট্রনশিয়াম কার্বনেট তৈরি করা হয়।[44] তাপ দিয়ে কার্বোত্যাজিকরণ দ্বারা সালফাইড জারিত করে সালফেট প্রস্তুত করা হয়:

SrSO4 + 2 C → SrS + 2 CO2

বার্ষিক প্রায় ৩০০,০০০ টন এই পদ্ধতিতে প্রক্রিয়াজাত করা হয়।[45] ধাতবটি অ্যালুমিনিয়ামের সাথে স্ট্রনশিয়াম অক্সাইড জারিত করে বাণিজ্যিকভাবে উৎপাদিত হয়। স্ট্রনশিয়ামটি মিশ্রণ থেকে পাতন করা হয়।[45] গলিত পটাসিয়াম ক্লোরাইডে স্ট্রনশিয়াম ক্লোরাইডের দ্রবণের তড়িৎ বিশ্লেষণের মাধ্যমে স্ট্রনশিয়াম ধাতুও ছোট আকারে প্রস্তুত করা যেতে পারে:[4]

Sr2+ + 2e → Sr
2 Cl → Cl2 + 2 e

ব্যবহার

স্ট্রনশিয়াম এবং বেরিয়াম অক্সাইডযুক্ত গ্লাস থেকে তৈরি সিআরটি কম্পিউটার মনিটর ফ্রন্ট প্যানেল। এই পদ্ধতিটি বিশ্বের বেশিরভাগ উৎপাদক স্ট্রনশিয়াম উৎপাদনে ব্যবহার করে

স্ট্রনশিয়ামের উৎপাদনের ৭৫% গ্রহণ করা হয়, প্রাথমিক ব্যবহার রঙিন টেলিভিশন ক্যাথোড রে টিউবগুলির জন্য যে গ্লাসে রয়েছে তাতে,[45] যেখানে এটি এক্স-রে নিঃসরণ রোধ করে।.[46][47] স্ট্রনশিয়ামের জন্য এই ব্যবহারটি হ্রাস পাচ্ছে কারণ সিআরটিগুলি অন্য প্রদর্শন পদ্ধতিতে প্রতিস্থাপন করা হচ্ছে। এই পতন স্ট্রনশিয়ামের খনন এবং পরিশোধনের উপর একটি উল্লেখযোগ্য প্রভাব ফেলেছে।[39] সিআরটি-র সমস্ত অংশ অবশ্যই এক্স-রে শোষণ করবে। টিউবের ঘাড় এবং ফানলে, সীসা কাচটি এই উদ্দেশ্যে ব্যবহৃত হয়, তবে এই ধরনের কাঁচটি গ্লাসের সাথে এক্স-রেয়ের মিথস্ক্রিয়তার কারণে একটি বাদামী প্রভাব দেখায়। অতএব, এক্স-রে শোষণের জন্য সামনের প্যানেলটি স্ট্রনশিয়াম এবং বেরিয়ামের সাথে একটি আলাদা কাচের মিশ্রণ থেকে তৈরি করা হয়। ২০০৫ সালে পুনর্ব্যবহারের গবেষণার জন্য নির্ধারিত কাচের মিশ্রণের গড় মানগুলি হল ৮.৫% স্ট্রনশিয়াম অক্সাইড এবং ১০% বেরিয়াম অক্সাইড।[48] স্ট্রনশিয়াম ক্যালসিয়ামের মতো হওয়ায় এটি হাড়ের সাথে সম্পর্কিত। চারটি স্থিতিশীল আইসোটোপগুলি সমন্বিত করা হয়েছে, প্রায় একই অনুপাতে তারা প্রকৃতিতে পাওয়া যায়। যাইহোক, আইসোটোপগুলির আসল বিতরণ এক ভৌগোলিক অবস্থান থেকে অন্য অঞ্চলে প্রচুর পরিবর্তিত হয়। সুতরাং, কোনও ব্যক্তির হাড় বিশ্লেষণ করা অঞ্চলটি নির্ধারণ করতে সহায়তা করতে পারে।[49][50] এই পদ্ধতির সাহায্যে প্রাচীন স্থানান্তরের নিদর্শনগুলি এবং যুদ্ধক্ষেত্রের সমাধিস্থলে একত্রিত মানুষের অবশেষের উৎস সনাক্ত করতে সহায়তা করে।[49][50][51]

87Sr/86Sr অনুপাত সাধারণত প্রাকৃতিক ব্যবস্থায়, বিশেষত সামুদ্রিক এবং জলসংক্রান্ত পরিবেশে পললগুলির সম্ভাব্য প্রবণতা অঞ্চলগুলি নির্ধারণ করতে ব্যবহৃত হয়। দাশ (১৯৬৯) দেখিয়েছেন যে আটলান্টিকের পৃষ্ঠের পললগুলি 87Sr/86Sr অনুপাত প্রদর্শন করেছিল যা পার্শ্ববর্তী ভূমিস্তরগুলি থেকে ভূতাত্ত্বিক অঞ্চলগুলির 87Sr/86Sr অনুপাতের বাল্ক গড় হিসাবে বিবেচিত হতে পারে।[52] জলসংক্রান্ত-সামুদ্রিক সিস্টেমের একটি ভাল উদাহরণ যার মধ্যে এসআর আইসোটোপ প্রোভেন্যান্স স্টাডিস সফলভাবে নিযুক্ত করা হয়েছে এটি হল নীল নদ-ভূমধ্যসাগরীয় ব্যবস্থা।[53] নীল এবং সাদা নীল নদের সিংহভাগ গঠিত শৈলগুলির বিভিন্নতম বয়সের কারণে, নীল নীলকাজা ও পূর্ব ভূমধ্যসাগর নদীর তলদেশে পললটির পরিবর্তিত প্রবাহের জলাবদ্ধতা অঞ্চলগুলি স্ট্রনশিয়াম আইসোটোপিক গবেষণার মাধ্যমে সনাক্ত করা যায়। এই ধরনের পরিবর্তনগুলি জলবায়ু নিয়ন্ত্রিত হয় লেট কোয়ার্টানারিত পিরিয়ডে।[53] অতি সম্প্রতি, 87Sr/86Sr অনুপাতগুলি নিউ মেক্সিকো এর চকো ক্যানিয়নে কাঠ এবং ভূট্টার মতো প্রাচীন প্রত্নতাত্ত্বিক সামগ্রীর উৎস নির্ধারণের জন্যও ব্যবহৃত হয়েছে।.[54][55] Sr/86Sr অনুপাতও পশুদের স্থানান্তর ট্র্যাক করতে ব্যবহার করা যেতে পারে।[56][57] 87

স্ট্রনশিয়াম অ্যালুমিনেট অন্ধকারে জ্বলা খেলনাগুলিতে ঘন ঘন ঘন ব্যবহৃত হয়, কারণ এটি রাসায়নিক এবং জৈবিকভাবে নিষ্কৃয় হয়।

red fireworks
আতশবাজিগুলিতে লাল রঙ তৈরি করার জন্য স্ট্রনশিয়াম লবণ যুক্ত করা হয়

স্ট্রনশিয়াম কার্বনেট এবং অন্যান্য স্ট্রনশিয়াম লবণের একটি গভীর লাল রঙ দিতে আতশবাজিগুলিতে যুক্ত করা হয়। এই একই প্রভাব শিখা পরীক্ষায় স্ট্রনশিয়াম আয়নগুলি সনাক্ত করতে সহায়তা করে। আতশবাজি বিশ্বের উৎপাদনের প্রায় ৫%।[45] স্ট্রনশিয়াম কার্বনেট শক্ত ফেরাইট চুম্বক তৈরিতে ব্যবহৃত হয়।[58][59] সংবেদনশীল দাঁতের জন্য মাঝে মাঝে স্ট্রনশিয়াম ক্লোরাইড টুথপেস্টে ব্যবহার করা হয়। একটি জনপ্রিয় ব্র্যান্ডের ওজন অনুসারে মোট উপাদানের ১০% স্ট্রনশিয়াম ক্লোরাইড হেক্সাহাইড্রেট অন্তর্ভুক্ত।[60] সামান্য পরিমাণে সীসা দূষণ দূর করতে জিংকের পরিশোধন করতে ব্যবহৃত হয়।[3] ধাতবটি নিজেই শূন্যস্থানে অবাঞ্ছিত গ্যাসগুলি তাদের বিক্রিয়া করে অপসারণের জন্য সীমিত ব্যবহার করে, যদিও বেরিয়ামও এই উদ্দেশ্যে ব্যবহার করা যেতে পারে।[4]

[Kr]5s2 1S0বৈদ্যুতিক স্থলাংশ এবং ক্ষণস্থায়ী [Kr]5s5p 3P0 উত্তেজিত অংশ 87Sr এর মধ্যে অতি-সংকীর্ণ অপটিক্যাল রূপান্তর হিসাবে দ্বিতীয়টির ভবিষ্যতের পুনঃ-সংজ্ঞা হিসাবে অগ্রণী উপাদনের একটি 133Cs বিভিন্ন হাইপোফাইন স্থলভাগের মধ্যে মাইক্রোওয়েভ ট্রানজিশন থেকে প্রাপ্ত বর্তমান সংজ্ঞার বিরোধিতা করে।[61] এই রূপান্তরটিতে চলমান বর্তমান অপটিকাল পারমাণবিক ঘড়িগুলি ইতিমধ্যে দ্বিতীয়টির বর্তমান সংজ্ঞাটির নির্ভুলতা এবং যথার্থতা ছাড়িয়ে গেছে।

তেজস্ক্রিয় স্ট্রনশিয়াম

89Sr হল মেটাস্ট্রনের সক্রিয় উপাদান,[62] হাড়ের ব্যথার জন্য মেটাস্ট্যাটিক হাড়ের ক্যান্সারের মাধ্যমিকের জন্য ব্যবহৃত একটি রেডিওফার্মাসটিক্যাল। স্ট্রনশিয়ামটি শরীর দ্বারা ক্যালসিয়ামের মতো প্রক্রিয়াজাত করা হয়, অস্থিজনিত সংক্রমণের জায়গাগুলিতে এটিকে হাড়ের মধ্যে অন্তর্ভুক্ত করে। এই স্থানীয়করণটি ক্যান্সারজনিত ক্ষতটির উপর বিকিরণের প্রকাশককে কেন্দ্র করে ক্রিয়া করে।[16]

সোভিয়েত যুগের বাতিঘরগুলিতে ব্যবহৃত আরটিজি

90Sr রেডিওআইসোটোপ থার্মোইলেক্ট্রিক জেনারেটর (আরটিজি) এর পাওয়ার উৎস হিসাবে ব্যবহৃত হয়েছে। 90Sr প্রতি গ্রামে প্রায় ০.৯৩ ওয়াট তাপ উৎপাদন করে (এটি আরটিজিতে ব্যবহৃত 90Sr আকারের চেয়ে কম, যা স্ট্রনশিয়ামিয়াম ফ্লোরাইড)[63]। তবে 90Sr এর জীবনকাল 238Pu এর এক তৃতীয়াংশ এবং 238Pu এর চেয়ে কম ঘনত্ব, অন্য আরটিজি জ্বালানী অনুযায়ী। 90Sr এর প্রধান সুবিধাটি হল এটি 238Pu এর চেয়ে সস্তা এবং এটি পারমাণবিক বর্জ্যে পাওয়া যায়। সোভিয়েত ইউনিয়ন বাতিঘর এবং আবহাওয়া কেন্দ্রগুলির পাওয়ার উৎস হিসাবে এর উত্তর উপকূলে প্রায় ১০০০টি আরটিজি মোতায়েন করা হয়েছিল।[64][65]

জৈবিক ভূমিকা

স্ট্রনশিয়াম
ঝুঁকি প্রবণতা
জিএইচএস চিত্রলিপি The flame pictogram in the Globally Harmonized System of Classification and Labelling of Chemicals (GHS)The exclamation-mark pictogram in the Globally Harmonized System of Classification and Labelling of Chemicals (GHS)
জিএইচএস সাংকেতিক শব্দ বিপজ্জনক
জিএইচএস বিপত্তি বিবৃতি H261, H315
জিএইচএস সতর্কতামূলক বিবৃতি P223, P231+232, P370+378, P422[66]
এনএফপিএ ৭০৪
W

আকান্থেরিয়া, সামুদ্রিক রেডিওলারিয়ান প্রোটোজোয়ার মধ্যে তুলনামূলকভাবে বৃহত একটি গ্রুপ, স্ট্রনশিয়াম সালফেটের সমন্বয়ে গঠিত জটিল খনিজ কঙ্কাল তৈরি করে।[67] জৈবিক ব্যবস্থায় ক্যালসিয়াম স্ট্রনশিয়াম দ্বারা অল্প পরিমাণে প্রতিস্থাপিত হয়।[68] মানবদেহে, বেশিরভাগ শোষিত স্ট্রনশিয়ামটি হাড়ের মধ্যে জমা হয়। মানুষের হাড়ের স্ট্রনশিয়ামের ক্যালসিয়ামের অনুপাত ১০০০:১ থেকে ২০০০:১ এর মধ্যে, যা প্রায় রক্তের সিরামের মতোই।[69]

মানবদেহের উপর প্রভাব

মানবদেহ স্ট্রনশিয়াম এমনভাবে শোষণ করে যেন এটি তার হালকা কনজেনার ক্যালসিয়াম। যেহেতু উপাদানগুলি রাসায়নিকভাবে খুব অনুরূপ, স্থিতিশীল স্ট্রনশিয়াম আইসোটোপগুলি স্বাস্থ্যের জন্য উল্লেখযোগ্য হুমকি নয়। দিনে গড়ে প্রায় দুই মিলিগ্রাম স্ট্রনশিয়ামিয়াম গ্রহণ করা হয়।.[70] প্রাপ্তবয়স্কদের মধ্যে, স্ট্রনশিয়াম সেবন কেবল হাড়ের পৃষ্ঠের সাথে সংযুক্ত থাকে, তবে বাচ্চাদের মধ্যে স্ট্রনশিয়াম বর্ধমান হাড়ের খনিজগুলিতে ক্যালসিয়াম প্রতিস্থাপন করতে পারে এবং এর ফলে হাড়ের বৃদ্ধির সমস্যা হতে পারে।[71]

মানুষের দেহে স্ট্রনশিয়ামের জৈবিক অর্ধজীবনকাল বিভিন্নভাবে ১৪ থেকে ৬০০ দিন,[72][73] ১০০০ দিন,[74] ১৮ বছর[75] ৩০ বছর[76] এবং উচ্চতর সীমা হিসাবে বলা হয়েছে ৪৯ বছর।[77] দেহের মধ্যে স্ট্রনশিয়ামের জটিল বিপাক দ্বারা বিস্তৃত প্রকাশিত জৈবিক অর্ধ-জীবন পরিসংখ্যানগুলি ব্যাখ্যা করা হয়েছে। যাইহোক, সমস্ত মলত্যাগের পথের গড় হিসাবে, সামগ্রিক জৈবিক অর্ধ-জীবন প্রায় ১৮ বছর অনুমান করা হয়।[78] হাড় বিপাকের পার্থক্যের কারণে স্ট্রনশিয়ামের নির্মূল হার বয়স এবং লিঙ্গ দ্বারা দৃঢ়ভাবে প্রভাবিত হয়।[79]

স্ট্রনশিয়াম রেনেলেট ধরনের ঔষধ হাড়ের বৃদ্ধিতে সহায়তা করে, হাড়ের ঘনত্ব বাড়ায় এবং ভার্চুয়াল, পেরিফেরিয়াল এবং নিতম্বের ভঙ্গলের প্রকোপকে কমিয়ে দেয়।[80][81] তবে স্ট্রনশিয়াম রেনেলেটটি মায়োকার্ডিয়াল ইনফার্কশন সহ ভায়াস থ্রোম্বোয়েম্বোলিজম, পালমোনারি এম্বোলিজম এবং মারাত্মক কার্ডিওভাসকুলার ডিজঅর্ডারের ঝুঁকিও বাড়ায়। সুতরাং এর ব্যবহার এখন সীমাবদ্ধ এবং এর উপকারী প্রভাবগুলিও প্রশ্নবিদ্ধ, যেহেতু বর্ধিত হাড়ের ঘনত্ব আংশিকভাবে ক্যালসিয়ামের পরিবর্তে স্ট্রনশিয়ামের বৃদ্ধি ঘনত্বের কারণে ঘটে যা এটি প্রতিস্থাপন করে। স্ট্রনশিয়ামও শরীরে বায়োয়াক্কামুলেট করে।.[82] স্ট্রনশিয়াম রেনেলেট উপর বিধিনিষেধ সত্ত্বেও স্ট্রনশিয়াম এখনও কিছু পরিপূরকগুলিতে রয়েছে। [83][84] যখন মুখের সাহায্যে এটি গ্রহণ করা হয় তখন স্ট্রনশিয়াম ক্লোরাইডের ঝুঁকি নিয়ে খুব বেশি বৈজ্ঞানিক প্রমাণ নেই। রক্ত জমাট বাঁধার ব্যক্তিগত বা পারিবারিক ইতিহাসে যাদের স্ট্রনশিয়াম এড়ানোর পরামর্শ দেওয়া হয়।[83][84]

স্ট্রনশিয়াম ত্বকে সাময়িকভাবে প্রয়োগ করার সময় সংবেদনশীল জ্বালা প্ররিরোধ করে। [85][86] সাময়িকভাবে প্রয়োগ করা হয়েছে, এপিডার্মাল ব্যাপ্তিযোগ্যতা বাধা (ত্বকের বাধা) এর পুনরুদ্ধারের হারকে ত্বরান্বিত করার জন্য স্ট্রনশিয়াম উপযোগিতা দেখায়।[87]

আরোও দেখুন

তথ্যসূত্র

  1. P. Colarusso; ও অন্যান্য (১৯৯৬)। "High-Resolution Infrared Emission Spectrum of Strontium Monofluoride" (পিডিএফ)J. Molecular Spectroscopy175: 158।
  2. Greenwood and Earnshaw, p. 111
  3. Greenwood and Earnshaw, p. 119
  4. Greenwood and Earnshaw, p. 121
  5. Greenwood and Earnshaw, p. 117
  6. Greenwood and Earnshaw, p. 115
  7. Greenwood and Earnshaw, p. 124
  8. Miyoshi, N.; Kamiura, K.; Oka, H.; Kita, A.; Kuwata, R.; Ikehara, D.; Wada, M. (২০০৪)। "The Barbier-Type Alkylation of Aldehydes with Alkyl Halides in the Presence of Metallic Strontium"। Bulletin of the Chemical Society of Japan77 (2): 341। ডিওআই:10.1246/bcsj.77.341
  9. Miyoshi, N.; Ikehara, D.; Kohno, T.; Matsui, A.; Wada, M. (২০০৫)। "The Chemistry of Alkylstrontium Halide Analogues: Barbier-type Alkylation of Imines with Alkyl Halides"। Chemistry Letters34 (6): 760। ডিওআই:10.1246/cl.2005.760
  10. Miyoshi, N.; Matsuo, T.; Wada, M. (২০০৫)। "The Chemistry of Alkylstrontium Halide Analogues, Part 2: Barbier-Type Dialkylation of Esters with Alkyl Halides"। European Journal of Organic Chemistry2005 (20): 4253। ডিওআই:10.1002/ejoc.200500484
  11. Greenwood and Earnshaw, pp. 136—37
  12. Greenwood and Earnshaw, p. 19
  13. Halperin, Edward C.; Perez, Carlos A.; Brady, Luther W. (২০০৮)। Perez and Brady's principles and practice of radiation oncology। Lippincott Williams & Wilkins। পৃষ্ঠা 1997—। আইএসবিএন 978-0-7817-6369-1। সংগ্রহের তারিখ ১৯ জুলাই ২০১১
  14. Bauman, Glenn; Charette, Manya; Reid, Robert; Sathya, Jinka (২০০৫)। "Radiopharmaceuticals for the palliation of painful bone metastases — a systematic review"। Radiotherapy and Oncology75 (3): 258.E1—258.E13। ডিওআই:10.1016/j.radonc.2005.03.003
  15. "Strontium | Radiation Protection | US EPA"EPA। ২৪ এপ্রিল ২০১২। সংগ্রহের তারিখ ১৮ জুন ২০১২
  16. "Chernobyl: Assessment of Radiological and Health Impact, 2002 update; Chapter I — The site and accident sequence" (পিডিএফ)। OECD-NEA। ২০০২। সংগ্রহের তারিখ ৩ জুন ২০১৫
  17. Murray, W. H. (১৯৭৭)। The Companion Guide to the West Highlands of Scotland। London: Collins। আইএসবিএন 978-0-00-211135-5।
  18. "Thomas Charles Hope, MD, FRSE, FRS (1766-1844) - School of Chemistry"www.chem.ed.ac.uk
  19. Crawford, Adair (১৭৯০)। "On the medicinal properties of the muriated barytes"Medical Communications2: 301—59।
  20. Sulzer, Friedrich Gabriel; Blumenbach, Johann Friedrich (১৭৯১)। "Über den Strontianit, ein Schottisches Foßil, das ebenfalls eine neue Grunderde zu enthalten scheint"Bergmännisches Journal: 433—36।
  21. Although Thomas C. Hope had investigated strontium ores since 1791, his research was published in: Hope, Thomas Charles (১৭৯৮)। "Account of a mineral from Strontian and of a particular species of earth which it contains"Transactions of the Royal Society of Edinburgh4 (2): 3—39। ডিওআই:10.1017/S0080456800030726
  22. Murray, T. (১৯৯৩)। "Elementary Scots: The Discovery of Strontium"। Scottish Medical Journal38 (6): 188—89। ডিওআই:10.1177/003693309303800611পিএমআইডি 8146640
  23. Doyle, W.P.। "Thomas Charles Hope, MD, FRSE, FRS (1766—1844)"। The University of Edinburgh। ২ জুন ২০১৩ তারিখে মূল থেকে আর্কাইভ করা।
  24. Hope, Thomas Charles (১৭৯৪)। "Account of a mineral from Strontian and of a particular species of earth which it contains"Transactions of the Royal Society of Edinburgh3 (2): 141—49। ডিওআই:10.1017/S0080456800020275
  25. Davy, H. (১৮০৮)। "Electro-chemical researches on the decomposition of the earths; with observations on the metals obtained from the alkaline earths, and on the amalgam procured from ammonia"Philosophical Transactions of the Royal Society of London98: 333—70। ডিওআই:10.1098/rstl.1808.0023
  26. Taylor, Stuart (১৯ জুন ২০০৮)। "Strontian gets set for anniversary"। Lochaber News। ১৩ জানুয়ারি ২০০৯ তারিখে মূল থেকে আর্কাইভ করা।
  27. Weeks, Mary Elvira (১৯৩২)। "The discovery of the elements: X. The alkaline earth metals and magnesium and cadmium"। Journal of Chemical Education9 (6): 1046—57। ডিওআই:10.1021/ed009p1046বিবকোড:1932JChEd...9.1046W
  28. Partington, J. R. (১৯৪২)। "The early history of strontium"। Annals of Science5 (2): 157। ডিওআই:10.1080/00033794200201411
  29. Partington, J. R. (১৯৫১)। "The early history of strontium. Part II"। Annals of Science7: 95। ডিওআই:10.1080/00033795100202211
  30. স্ট্রনশিয়ামের প্রথম বৃহত আকারের প্রয়োগটি ছিল চিনি বীট থেকে চিনি উৎপাদনে। যদিও ১৮৪৯ সালে অগস্টিন-পিয়ের ডাবরুনফৌট স্ট্রনশিয়ামিয়াম হাইড্রোক্সাইড ব্যবহার করে একটি স্ফটিক তৈরির প্রক্রিয়াটি পেটেন্ট করেছিলেন।<ref name="Metalle in der Elektrochemie">Fachgruppe Geschichte Der Chemie, Gesellschaft Deutscher Chemiker (২০০৫)। Metalle in der Elektrochemie। পৃষ্ঠা 158—62।
  31. Heriot, T. H. P (২০০৮)। "strontium saccharate process"Manufacture of Sugar from the Cane and Beetআইএসবিএন 978-1-4437-2504-0।
  32. Börnchen, Martin। "Der Strontianitbergbau im Münsterland"। ১১ ডিসেম্বর ২০১৪ তারিখে মূল থেকে আর্কাইভ করা। সংগ্রহের তারিখ ৯ নভেম্বর ২০১০
  33. Martin, Josèm; Ortega-Huertas, Miguel; Torres-Ruiz, Jose (১৯৮৪)। "Genesis and evolution of strontium deposits of the granada basin (Southeastern Spain): Evidence of diagenetic replacement of a stromatolite belt"। Sedimentary Geology39 (3—4): 281। ডিওআই:10.1016/0037-0738(84)90055-1বিবকোড:1984SedG...39..281M
  34. "Chain Fission Yields"। iaea.org।
  35. Nordin, B. E. (১৯৬৮)। "Strontium Comes of Age"British Medical Journal1 (5591): 566। ডিওআই:10.1136/bmj.1.5591.566পিএমসি 1985251অবাধে প্রবেশযোগ্য
  36. Turekian, K. K.; Wedepohl, K. H. (১৯৬১)। "Distribution of the elements in some major units of the Earth's crust"Geological Society of America Bulletin72 (2): 175—92। ডিওআই:10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2বিবকোড:1961GSAB...72..175T
  37. Ober, Joyce A.। "Mineral Commodity Summaries 2010: Strontium" (পিডিএফ)। United States Geological Survey। সংগ্রহের তারিখ ১৪ মে ২০১০
  38. Heuel-Fabianek, B. (২০১৪)। "Partition Coefficients (Kd) for the Modelling of Transport Processes of Radionuclides in Groundwater" (পিডিএফ)Berichte des Forschungszentrums Jülich4375আইএসএসএন 0944-2952
  39. Stringfield, V. T. (১৯৬৬)। "Strontium"Artesian water in Tertiary limestone in the southeastern States। Geological Survey Professional Paper। United States Government Printing Office। পৃষ্ঠা 138—39।
  40. Angino, Ernest E.; Billings, Gale K.; Andersen, Neil (১৯৬৬)। "Observed variations in the strontium concentration of sea water"। Chemical Geology1: 145। ডিওআই:10.1016/0009-2541(66)90013-1বিবকোড:1966ChGeo...1..145A
  41. Ober, Joyce A.। "Mineral Commodity Summaries 2015: Strontium" (পিডিএফ)। United States Geological Survey। সংগ্রহের তারিখ ২৬ মার্চ ২০১৬
  42. Kemal, Mevlüt; Arslan, V.; Akar, A.; Canbazoglu, M. (১৯৯৬)। Production of SrCO3 by black ash process: Determination of reductive roasting parameters। পৃষ্ঠা 401। আইএসবিএন 978-90-5410-829-0।
  43. MacMillan, J. Paul; Park, Jai Won; Gerstenberg, Rolf; Wagner, Heinz; Köhler, Karl and Wallbrecht, Peter (2002) "Strontium and Strontium Compounds" in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim. ডিওআই:10.1002/14356007.a25_321.
  44. "Cathode Ray Tube Glass-To-Glass Recycling" (পিডিএফ)। ICF Incorporated, USEP Agency। ১৯ ডিসেম্বর ২০০৮ তারিখে মূল (পিডিএফ) থেকে আর্কাইভ করা। সংগ্রহের তারিখ ৭ জানুয়ারি ২০১২
  45. Ober, Joyce A.; Polyak, Désirée E.। "Mineral Yearbook 2007: Strontium" (পিডিএফ)। United States Geological Survey। সংগ্রহের তারিখ ১৪ অক্টোবর ২০০৮
  46. Méar, F.; Yot, P.; Cambon, M.; Ribes, M. (২০০৬)। "The characterization of waste cathode-ray tube glass"। Waste Management26 (12): 1468—76। ডিওআই:10.1016/j.wasman.2005.11.017পিএমআইডি 16427267
  47. Price, T. Douglas; Schoeninger, Margaret J.; Armelagos, George J. (১৯৮৫)। "Bone chemistry and past behavior: an overview"। Journal of Human Evolution14 (5): 419—47। ডিওআই:10.1016/S0047-2484(85)80022-1
  48. Steadman, Luville T.; Brudevold, Finn; Smith, Frank A. (১৯৫৮)। "Distribution of strontium in teeth from different geographic areas"। The Journal of the American Dental Association57 (3): 340—44। ডিওআই:10.14219/jada.archive.1958.0161
  49. Schweissing, Matthew Mike; Grupe, Gisela (২০০৩)। "Stable strontium isotopes in human teeth and bone: a key to migration events of the late Roman period in Bavaria"। Journal of Archaeological Science30 (11): 1373—83। ডিওআই:10.1016/S0305-4403(03)00025-6
  50. Dasch, J. (১৯৬৯)। "Strontium isotopes in weathering profiles, deep-sea sediments, and sedimentary rocks"। Geochimica et Cosmochimica Acta33 (12): 1521—52। ডিওআই:10.1016/0016-7037(69)90153-7বিবকোড:1969GeCoA..33.1521D
  51. Krom, M. D.; Cliff, R.; Eijsink, L. M.; Herut, B.; Chester, R. (১৯৯৯)। "The characterisation of Saharan dusts and Nile particulate matter in surface sediments from the Levantine basin using Sr isotopes"। Marine Geology155 (3—4): 319—30। ডিওআই:10.1016/S0025-3227(98)00130-3বিবকোড:1999MGeol.155..319K
  52. Benson, L.; Cordell, L.; Vincent, K.; Taylor, H.; Stein, J.; Farmer, G. & Kiyoto, F. (২০০৩)। "Ancient maize from Chacoan great houses: where was it grown?"Proceedings of the National Academy of Sciences100 (22): 13111—15। ডিওআই:10.1073/pnas.2135068100পিএমআইডি 14563925পিএমসি 240753অবাধে প্রবেশযোগ্যবিবকোড:2003PNAS..10013111B
  53. English NB; Betancourt JL; Dean JS; Quade J. (অক্টোবর ২০০১)। "Strontium isotopes reveal distant sources of architectural timber in Chaco Canyon, New Mexico"Proc Natl Acad Sci USA98 (21): 11891—96। ডিওআই:10.1073/pnas.211305498পিএমআইডি 11572943পিএমসি 59738অবাধে প্রবেশযোগ্যবিবকোড:2001PNAS...9811891E
  54. Barnett-Johnson, Rachel; Grimes, Churchill B.; Royer, Chantell F.; Donohoe, Christopher J. (২০০৭)। "Identifying the contribution of wild and hatchery Chinook salmon (Oncorhynchus tshawytscha) to the ocean fishery using otolith microstructure as natural tags"। Canadian Journal of Fisheries and Aquatic Sciences64 (12): 1683—92। ডিওআই:10.1139/F07-129
  55. Porder, S.; Paytan, A. & E.A. Hadly (২০০৩)। "Mapping the origin of faunal assemblages using strontium isotopes"Paleobiology29 (2): 197—204। ডিওআই:10.1666/0094-8373(2003)029<0197:MTOOFA>2.0.CO;2
  56. "Ferrite Permanent Magnets"। Arnold Magnetic Technologies। ১৪ মে ২০১২ তারিখে মূল থেকে আর্কাইভ করা। সংগ্রহের তারিখ ১৮ জানুয়ারি ২০১৪
  57. "Barium Carbonate"। Chemical Products Corporation। ৬ অক্টোবর ২০১৪ তারিখে মূল থেকে আর্কাইভ করা। সংগ্রহের তারিখ ১৮ জানুয়ারি ২০১৪
  58. Ghom (১ ডিসেম্বর ২০০৫)। Textbook of Oral Medicine। পৃষ্ঠা 885। আইএসবিএন 978-81-8061-431-6।
  59. CartlidgeMar. 1, Edwin; 2018; Pm, 12:00 (২০১৮-০২-২৮)। "With better atomic clocks, scientists prepare to redefine the second"Science | AAAS (ইংরেজি ভাষায়)। সংগ্রহের তারিখ ২০১৯-০২-১০
  60. "FDA ANDA Generic Drug Approvals"Food and Drug Administration। ৯ এপ্রিল ২০১৬ তারিখে মূল থেকে আর্কাইভ করা। সংগ্রহের তারিখ ২৪ আগস্ট ২০১৯
  61. "What are the fuels for radioisotope thermoelectric generators?"qrg.northwestern.edu
  62. Doyle, James (৩০ জুন ২০০৮)। Nuclear safeguards, security and nonproliferation: achieving security with technology and policy। পৃষ্ঠা 459। আইএসবিএন 978-0-7506-8673-0।
  63. O'Brien, R. C.; Ambrosi, R. M.; Bannister, N. P.; Howe, S. D.; Atkinson, H. V. (২০০৮)। "Safe radioisotope thermoelectric generators and heat sources for space applications"। Journal of Nuclear Materials377 (3): 506—21। ডিওআই:10.1016/j.jnucmat.2008.04.009বিবকোড:2008JNuM..377..506O
  64. "Strontium 343730"Sigma-Aldrich
  65. De Deckker, Patrick (২০০৪)। "On the celestite-secreting Acantharia and their effect on seawater strontium to calcium ratios"। Hydrobiologia517 (1—3): 1। ডিওআই:10.1023/B:HYDR.0000027333.02017.50
  66. Pors Nielsen, S. (২০০৪)। "The biological role of strontium"। Bone35 (3): 583—88। ডিওআই:10.1016/j.bone.2004.04.026পিএমআইডি 15336592
  67. Cabrera, Walter E.; Schrooten, Iris; De Broe, Marc E.; d'Haese, Patrick C. (১৯৯৯)। "Strontium and Bone"। Journal of Bone and Mineral Research14 (5): 661—68। ডিওআই:10.1359/jbmr.1999.14.5.661পিএমআইডি 10320513
  68. Emsley, John (২০১১)। Nature's building blocks: an A—Z guide to the elements। Oxford University Press। পৃষ্ঠা 507আইএসবিএন 978-0-19-960563-7।
  69. Agency for Toxic Substances and Disease Registry (২১ জানুয়ারি ২০১৫)। "ATSDR — Public Health Statement: Strontium"cdc.gov। Agency for Toxic Substances and Disease Registry। সংগ্রহের তারিখ ১৭ নভেম্বর ২০১৬
  70. Tiller, B. L. (২০০১), "4.5 Fish and Wildlife Surveillance" (পিডিএফ), Hanford Site 2001 Environmental Report, DOE, ১১ মে ২০১৩ তারিখে মূল (পিডিএফ) থেকে আর্কাইভ করা, সংগ্রহের তারিখ ১৪ জানুয়ারি ২০১৪
  71. Driver, C. J. (১৯৯৪), Ecotoxicity Literature Review of Selected Hanford Site Contaminants (পিডিএফ), DOE, ডিওআই:10.2172/10136486, সংগ্রহের তারিখ ১৪ জানুয়ারি ২০১৪
  72. "Freshwater Ecology and Human Influence"। Area IV Envirothon। ১ জানুয়ারি ২০১৪ তারিখে মূল থেকে আর্কাইভ করা। সংগ্রহের তারিখ ১৪ জানুয়ারি ২০১৪
  73. "Radioisotopes That May Impact Food Resources" (পিডিএফ)। Epidemiology, Health and Social Services, State of Alaska। ২১ আগস্ট ২০১৪ তারিখে মূল (পিডিএফ) থেকে আর্কাইভ করা। সংগ্রহের তারিখ ১৪ জানুয়ারি ২০১৪
  74. "Human Health Fact Sheet: Strontium" (পিডিএফ)। Argonne National Laboratory। অক্টোবর ২০০১। ২৪ জানুয়ারি ২০১৪ তারিখে মূল (পিডিএফ) থেকে আর্কাইভ করা। সংগ্রহের তারিখ ১৪ জানুয়ারি ২০১৪
  75. "Biological Half-life"। HyperPhysics। সংগ্রহের তারিখ ১৪ জানুয়ারি ২০১৪
  76. Glasstone, Samuel; Dolan, Philip J. (১৯৭৭)। "XII: Biological Effects" (পিডিএফ)The effects of Nuclear Weapons। পৃষ্ঠা 605। সংগ্রহের তারিখ ১৪ জানুয়ারি ২০১৪
  77. Shagina, N. B.; Bougrov, N. G.; Degteva, M. O.; Kozheurov, V. P.; Tolstykh, E. I. (২০০৬)। "An application of in vivo whole body counting technique for studying strontium metabolism and internal dose reconstruction for the Techa River population"। Journal of Physics: Conference Series41 (1): 433—40। ডিওআই:10.1088/1742-6596/41/1/048বিবকোড:2006JPhCS..41..433S
  78. Meunier P. J.; Roux C.; Seeman E.; Ortolani, S.; Badurski, J. E.; Spector, T. D.; Cannata, J.; Balogh, A.; Lemmel, E. M.; Pors-Nielsen, S.; Rizzoli, R.; Genant, H. K.; Reginster, J. Y. (জানুয়ারি ২০০৪)। "The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis" (পিডিএফ)New England Journal of Medicine350 (5): 459—68। ডিওআই:10.1056/NEJMoa022436পিএমআইডি 14749454
  79. Reginster JY; Seeman E; De Vernejoul MC; Adami, S.; Compston, J.; Phenekos, C.; Devogelaer, J. P.; Diaz Curiel, M.; Sawicki, A.; Goemaere, S.; Sorensen, O. H.; Felsenberg, D.; Meunier, P. J. (মে ২০০৫)। "Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis: treatment of peripheral osteoporosis (TROPOS) study" (পিডিএফ)J Clin Metab.90 (5): 2816—22। ডিওআই:10.1210/jc.2004-1774পিএমআইডি 15728210
  80. Price, Charles T.; Langford, Joshua R.; Liporace, Frank A. (৫ এপ্রিল ২০১২)। "Essential Nutrients for Bone Health and a Review of their Availability in the Average North American Diet"Open Orthop. J.6: 143—49। ডিওআই:10.2174/1874325001206010143পিএমআইডি 22523525পিএমসি 3330619অবাধে প্রবেশযোগ্য
  81. "Strontium"WebMD। সংগ্রহের তারিখ ২০ নভেম্বর ২০১৭
  82. "Strontium for Osteoporosis"WebMD। সংগ্রহের তারিখ ২০ নভেম্বর ২০১৭
  83. Hahn, G.S. (১৯৯৯)। "Strontium Is a Potent and Selective Inhibitor of Sensory Irritation" (পিডিএফ)Dermatologic Surgery25 (9): 689—94। ডিওআই:10.1046/j.1524-4725.1999.99099.xপিএমআইডি 10491058। ৩১ মে ২০১৬ তারিখে মূল (পিডিএফ) থেকে আর্কাইভ করা।
  84. Hahn, G.S. (২০০১)। Anti-irritants for Sensory IrritationHandbook of Cosmetic Science and Technology। পৃষ্ঠা 285। আইএসবিএন 978-0-8247-0292-2।
  85. Kim, Hyun Jeong; Kim, Min Jung; Jeong, Se Kyoo (২০০৬)। "The Effects of Strontium Ions on Epidermal Permeability Barrier"The Korean Dermatological Association, Korean Journal of Dermatology44 (11): 1309। ৪ জুন ২০২১ তারিখে মূল থেকে আর্কাইভ করা। সংগ্রহের তারিখ ২৪ আগস্ট ২০১৯

গ্রন্থপঞ্জি

  • Greenwood, N. N.; Earnshaw, A. (১৯৯৭)। Chemistry of the Elements (2nd সংস্করণ)। Butterworth-Heinemannআইএসবিএন 0080379419।

বহিঃসংযোগ

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.