দ্বিমিক সংখ্যাপদ্ধতি

বাইনারি সংখ্যা পদ্ধতি বা দ্বিমিক সংখ্যা পদ্ধতি (ইংরেজি: Binary number system) একটি সংখ্যা পদ্ধতি যাতে সকল সংখ্যাকে কেবলমাত্র ০ এবং ১ দিয়ে প্রকাশ করা হয়। এই সংখ্যা পদ্ধতির ভিত্তি দুই। ডিজিটাল ইলেকট্রনিক যন্ত্রপাতির লজিক গেটে এই সংখ্যাপদ্ধতির ব্যাপক প্রয়োগ রয়েছে। তাছাড়া প্রায় সকল আধুনিক কম্পিউটারে বাইনারি সংখ্যা পদ্ধতি ব্যবহার করা হয়। বাইনারি পদ্ধতিতে প্রতিটি অঙ্ককে বিট বলা হয়।

সংখ্যা পদ্ধতিকে সাধারণত ৪ ভাগে ভাগ করা হয়। (১) ডেসিমেল নাম্বার সিস্টেম, (২) বাইনারী নাম্বার সিস্টেম, (৩) অক্টাল নাম্বার সিস্টেম ‍ও (৪) হেক্সা ডেসিমেল নাম্বার সিস্টেম। ডেসিমেল নাম্বার

সিস্টেমে অঙ্ক ১০ টি অর্থাৎ এর বেজ ১০ (১,২,৩,৪,৫,৬,৭,৮,৯,০)। অনুরূপভাবে বাইনারী নাম্বার সিস্টেমের বেজ ২ (১,০), অক্টাল নাম্বার সিস্টেমের বেজ ৮ (১,২,৩,৪,৫,৬,৭,০), হেক্সা ডেসিমেল নাম্বার সিস্টেমের বেজ ১৬(১,২,৩,৪,৫,৬,৭,৮,৯,A,B,C,D,E,F, ০ )।

বাইনারি সংখ্যাপদ্ধতির রূপান্তর

৫ এর বাইনারি (?)

(৫)১০ কে বাইনারি বেজ অর্থাৎ ২ দ্বারা ভাগ করে করে অগ্রসর হতে হবে।


৫÷২

ভাগফল ২ ভাগশেষ ১ (LSB কম গুরুত্বপূর্ণ বিট)

২÷২

ভাগফল ১ ভাগশেষ ০

১÷২

ভাগফল ০ ভাগশেষ ১ (MSB সর্বাধিক গুরুত্বপূর্ণ বিট)

ভাগশেষ গুলোকে MSB থেকে LSB হিসাবে সাজিয়ে নিতে হবে।


অর্থাৎ ১০১

(৫)১০=(১০১)


আবার ১০১ এর ডেসিমেল মান অর্থাৎ দশমিক সংখ্যা হবে

১×২+০×২+১×২

=১×৪+০×২+১×১

=৪+০+১

=৫

তথ্যসূত্র

    বহিঃসংযোগ

    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.