ডিএনএ
ডিঅক্সিরাইবোনিউক্লিক এসিড (ইংরেজি: DNA) একটি নিউক্লিক এসিড যা জীবদেহের গঠন ও ক্রিয়াকলাপ নিয়ন্ত্রণের জিনগত নির্দেশ ধারণ করে। সকল জীবের ডিএনএ জিনোম থাকে। একটি সম্ভাব্য ব্যতিক্রম হচ্ছে কিছু ভাইরাস গ্রুপ যাদের আরএনএ জিনোম রয়েছে, তবে ভাইরাসকে সাধারণত জীবন্ত প্রাণ হিসেবে ধরা হয় না। কোষে ডিএনএর প্রধান কাজ দীর্ঘকালের জন্য তথ্য সংরক্ষণ। জিনোমকে কখনও নীলনকশার সাথে তুলনা করা হয় কারণ, এতে কোষের বিভিন্ন অংশে যেমন: প্রোটিন ও আরএনএ অণু, গঠনের জন্য প্রয়োজনীয় নির্দেশাবলি থাকে। ডিএনএর যে অংশ এ জিনগত তথ্য বহন করে তাদের বলে জিন, কিন্তু অন্যান্য ডিএনএ ক্রমের গঠনগত তাৎপর্য রয়েছে অথবা তারা জিনগত তথ্য নিয়ন্ত্রণে ব্যবহৃত হয়।
বংশাণুবিজ্ঞান |
---|
ধারাবাহিকের একটি অংশ |
|
ইউক্যারিওটিক যেমন প্রাণী ও উদ্ভিদে, ডিএনএ নিউক্লিয়াসের ভিতরে থাকে, তবে প্রোক্যারিওটিক যেমন ব্যাকটেরিয়াতে, ডিএনএ কোষের সাইটোপ্লাজমে থাকে। উৎসেচকের মতো ডিএনএ অধিকাংশ জৈবরসায়ন বিক্রিয়ায় সরাসরি অংশ নেয় না; মূলত, বিভিন্ন উৎসেচক ডিএনএর উপর কাজ করে এর তথ্য নকল করে রেপ্লিকেশনের মাধ্যমে আরও ডিএনএ তৈরি করে, অথবা অনুলিপি তৈরি ও রূপান্তর ঘটিয়ে একে প্রোটিনে পরিণত করে। ক্রোমোজোমের ক্রোমাটিন প্রোটিন যেমন হিস্টোন ডিএনএকে ঘনসন্নিবেশিত ও সংগঠিত করে, যা নিউক্লিয়াসের অন্যান্য প্রোটিনের সাথে এর আচরণ নিয়ন্ত্রণে সাহায্য করে।
ডিএনএ নিউক্লিওটাইড নামক অণু সরলভাবে গঠিত একটি লম্বা পলিমার যা পাচঁ কার্বন বিশিষ্ট শর্করা ও অজৈব ফসফেট গ্রুপ দিয়ে গঠিত মেরুদণ্ডের সাথে যুক্ত। এই মেরুদণ্ডে চার ধরনের অণু থাকে যাদের বলে ক্ষার, এই চারটি ক্ষারের ক্রমই তথ্য ধারণ করে। ডিএনএর প্রধান কাজ জিনগত কোড ব্যবহার করে প্রোটিন থেকে অ্যামিনো এসিড এর ক্রম তৈরি করা। জিনগত কোড পড়ার জন্য কোষ নিউক্লিক অ্যাসিড আরএনএতে ডিএনএর কিছু অংশের নকল তৈরি করে। কিছু আরএনএ নকল প্রোটিন জৈবসংশ্লেষণ নিয়ন্ত্রণে ব্যবহৃত হয়, বাকিগুলো সরাসরি রাইবোজোম অথবা স্প্লাইসোজোম এর উপাদান হিসেবে থাকে।
ভৌত ও রাসায়নিক ধর্ম
ডিএনএ নিউক্লিওটাইড অণুর সমন্বয়ে গড়া একটি লম্বা পলিমার।[1][2] ডিএনএ শৃংখল ২২ থেকে ২৪ Å চওড়া, এবং একটি নিউক্লিওটাইড অণু ৩.৩Å দীর্ঘ।[3] যদিও এসব অণু খুব ছোটো, ডিএনএ পলিমার কয়েক মিলিয়ন নিউক্লিওটাইড নিয়ে অনেক বরো হতে পারে। উদাহরণস্বরুপ, সবচেয়ে বড়ো মানব ক্রোমোজোম, ক্রোমোজোম নং ১, ২২০ মিলিয়ন ক্ষার জোড়ার সমান দীর্ঘ।[4]
জীবদেহে ডিএনএ একটি একক অণু হিসেবে থাকে না, বরং চাপাচাপি করে জোড়া-অণু হিসেবে থাকে। [5][6] এই লম্বা সূত্র দুইটি আঙুরের মতো প্যাঁচানো থাকে, যা দ্বৈত হেলিক্সের মত হয়। একটি ডিএনএ সূত্রে থাকে নিউক্লিওটাইড যা ডিএনএ মেরুদণ্ডকে ধরে রাখে, এবং একটি ক্ষার যা অন্য ডিএনএ সূত্রের সাথে সংযোগ স্থাপন করে। এই নিউক্লিওটাইড ও ক্ষারের পুনরাবৃত্তিতেই ডিএনএ সূত্র গঠিত। সাধারণভাবে একটি ক্ষার যদি একটি চিনি অণুর সাথে যুক্ত থাকে তাকে বলে নিউক্লিওসাইড এবং একটি ক্ষার যদি একটি চিনি ও এক বা একাধিক ফসফেট অণুর সাথে যুক্ত থাকে তাকে বলে নিউক্লিওটাইড। যদি একাধিক নিউক্লিওটাইড একসাথে যুক্ত থাকে, যেমন ডিএনএতে, তবে এই পলিমারকে বলে পলিনিউক্লিওটাইড।[7]
ডিএনএ সূত্রের মেরুদণ্ড ফসফেট ও চিনি অণুর পুনরাবৃত্তিতে গঠিত।[8] ডিএনএর চিনি হচ্ছে পেন্টোজ (পাঁচ কার্বন বিশিষ্ট) ২-ডিঅক্সিরাইবোজ। এই চিনি ফসফেট গ্রুপের সাথে যুক্ত হয়ে পাশাপাশি চিনির অণুর মধ্যে তৃতীয় ও পঞ্চম কার্বন পরমাণুর স্থানে ফসফোডিয়েসটার বন্ধন গঠন করে। এই অপ্রতিসম বন্ধন বোঝায় যে ডিএনএ অণুর মেরু বা দিক আছে। দ্বৈত হেলিক্সে এক সূত্রের নিউক্লিওটাইডের দিক অন্য সূত্রের ঠিক বিপরীত দিকে থাকে। ডিএনএ সূত্রের এই ধরনের বিন্যাসকে প্রতিসমান্তরাল। ডিএনএর অপ্রতিসম প্রান্তকে বলে ৫' (ফাইভ প্রাইম) এবং ৩' (থ্রি প্রাইম) প্রান্ত। ডিএনএ ও আরএনএর মধ্যকার একটি প্রধান পার্থক্য হলো চিনিতে, যেখানে ডিএনএতে ২-ডিঅক্সিরাইবোজ ব্যবহৃত হয় সেখানে আরএনএতে আরেকটি পেন্টোজ চিনি রাইবোজ ব্যবহৃত হয়।[6]
ডিএনএর দ্বৈত হেলিক্স হাইড্রোজেন বন্ধনের মাধ্যমে স্থির থাকে, যা দুটি সূত্রের মধ্যে সংযুক্ত থাকে। ডিএনএতে যে চারটি ক্ষার পাওয়া যায় তা হল অ্যাডেনিন।এডেনিন (সংক্ষেপে A), সাইটোসিন (C), গুয়ানিন (G) এবং থাইমিন (T)। এরা পরস্পরের সাথে যুক্ত হওয়ার ক্ষেত্রে সবসময় অ্যাডেনিন।এডেনিন (A) শুধুমাত্র থাইমিনের(T) সাথে এবং গুয়ানিন(G) শুধুমাত্র সাইটোসিনের(C) সাথে যুক্ত হয়। নিম্নে এই চারটি ক্ষার দেখানো হয়েছে যারা চিনি/ফসফেটের সাথে যুক্ত হয়ে সম্পূর্ণ নিউক্লিওটাইড গঠন করে, যেমনঃ এডিনোসিন মনোফসফেট।
এই ক্ষারগুলো দুই ভাগে ভাগ করা যায়; অ্যাডেনিন ও গুয়ানিন হল পিউরিন নামক ৫- ও ৬- কার্বনচক্রের হেটারোসাইক্লিক যৌগ এবং সাইটোসিন ও থাইমিন হল পাইরিমিডিন নামক কার্বনচক্রের যৌগ।[7] ইউরাসিল (U) নামে পঞ্চম আরেকটি পাইরিমিডিন ক্ষার আছে যা সাধারণত আরএনএতে থাইমিনের বদলে থাকে। থাইমিনের সাথে এর পার্থক্য হচ্ছে কেবল একটি মিথাইল গ্রুপের অনুপস্থিতি। ডিএনএতে কেবল সাইটোসিনের ভাঙনের ফলে উপজাত হিসেবে ইউরাসিল পাওয়া যেতে পারে, তবে ব্যতিক্রম হচ্ছে পিবিএস-১ নামের একটি ব্যাকটেরিয়াল ভাইরাস যার ডিএনএতে ইউরাসিল রয়েছে।[9] কিন্তু আরএনএ সংশ্লেষণের সময় উল্লেখযোগ্য পরিমাণ ইউরাসিল এনজাইমের প্রভাবে একটি মিথাইল গ্রুপ যুক্ত হয়ে থাইমিনে পরিণত হয়। মূলত গাঠনিক ও এনজাইম আরএনএ যেমনঃ ট্রান্সফার আরএনএ ও রাইবোজোমাল আরএনএতেই এই ঘটনা ঘটে।[10]
ডিএনএর দ্বৈত হেলিক্স ডান-হাতি সর্পিলাকার হয়ে থাকে। ডিএনএ সূত্রগুলো যখন প্যাঁচানো থাকে তখন তাদের ফসফেটের মেরুদণ্ডের মাঝে জায়গা রাখা থাকে। এই জায়গাতে ক্ষারগুলো যুক্ত হয় (অ্যানিমেশন দেখুন)। দ্বৈত হেলিক্সের তলে দুই জায়গায় এরকম প্যাঁচানো খাঁজ (groove) থাকে। একটি খাঁজ ২২Å প্রশস্ত ও অন্যটি ১২Å প্রশস্ত।[12] বৃহত্তর খাঁজটিকে বলে মেজর গ্রুভ ছোটোটিকে বলে মাইনর গ্রুভ। মাইনর গ্রুভের সরুতার অর্থ হলো ক্ষারের প্রান্তগুলো মেজর গ্রুভে তুলনামুলক বেশি সহজে প্রবেশ করতে পারে। এর ফলে কিছু প্রোটিন যা ডিএনএতে কিছু নির্দিষ্ট ক্রমে যুক্ত হতে পারে, তারা ডিএনএতে মেজর গ্রুভের ক্ষারের সংস্পর্শে এসে কাঙ্ক্ষিত ক্রম খুঁজে নেয়।[13]
DNA এর নিউক্লিওবেস শ্রেনীবিন্যাস
DNA এর নিউক্লিওবেস শ্রেনীবিন্যাস দুই ধরনের একটি পিউরিন যা A ও G যেটি ৫ ও ৬ কার্বনবিশিষ্ট হেটারোসাইক্লিক যৌগ এবং আরেকটি পাইরিমিডিন যা ৬ কার্বন বিশিষ্ট রিং (গোলাকার)যৌগ C ও ট আর পঞ্চম পাইরিমিডিন হচ্ছে ইউরাসিল (U).এটি থাইমিনের পরিবর্তনে RNA তে থাকে। ইউরাসিলের রিং এ মিথাইল গ্রুপ না থাকায় এটি থাইমিনের থেকে আলাদা। RNA ও DNA ছাড়াও অনেক কৃত্রিম নিউক্লিক অ্যাসিড এনালগ তৈরি করা হয়েছে নিউক্লিক অ্যাসিডের বৈশিষ্ট্য গুলো অধ্যয়নের জন্য অথবা জৈবপ্রযুক্তিতে ব্যবহারের জন্য।
প্রযুক্তি ব্যবহার করে
জীনতত্ত্ব প্রকৌশলী
জীব থেকে ডিএনএ শুদ্ধ করার জন্য পদ্ধতি তৈরি করা হয়েছে, যেমন ফেনল-ক্লোরোফর্ম নিষ্কাশন , এবং এটিকে পরীক্ষাগারে পরিচালনা করার জন্য, যেমন সীমাবদ্ধতা হজম এবং পলিমারেজ চেইন বিক্রিয়া । আধুনিক জীববিজ্ঞান এবং জৈব রসায়ন রিকম্বিন্যান্ট ডিএনএ প্রযুক্তিতে এই কৌশলগুলির নিবিড় ব্যবহার করে। রিকম্বিন্যান্ট ডিএনএ হল একটি মানবসৃষ্ট ডিএনএ সিকোয়েন্স যা অন্যান্য ডিএনএ সিকোয়েন্স থেকে একত্রিত করা হয়েছে। এগুলিকে ভাইরাল ভেক্টর ব্যবহার করে প্লাজমিডের আকারে বা উপযুক্ত বিন্যাসে জীবে রূপান্তরিত করা যেতে পারে । পরিবর্তিতউত্পাদিত জীবগুলিকে রিকম্বিন্যান্ট প্রোটিনের মতো পণ্য তৈরি করতে ব্যবহার করা যেতে পারে , যা চিকিৎসা গবেষণায় ব্যবহৃত হয় কৃষিতে জন্মায় ।
ডিএনএ প্রোফাইলিং
ফরেনসিক বিজ্ঞানীরা একজন অপরাধীর মতো একজন ব্যক্তির মিলিত ডিএনএ সনাক্ত করতে রক্ত , বীর্য , ত্বক , লালা বা চুলের ডিএনএ ব্যবহার করতে পারেন । এই প্রক্রিয়াটিকে আনুষ্ঠানিকভাবে ডিএনএ প্রোফাইলিং বলা হয় , যাকে ডিএনএ ফিঙ্গারপ্রিন্টিংও বলা হয় । ডিএনএ প্রোফাইলিং-এ, পুনরাবৃত্ত ডিএনএ-র পরিবর্তনশীল বিভাগের দৈর্ঘ্য, যেমন শর্ট টেন্ডেম রিপিট এবং মিনিসেটেলাইট , মানুষের মধ্যে তুলনা করা হয়। এই পদ্ধতিটি সাধারণত একটি ম্যাচিং ডিএনএ সনাক্ত করার জন্য একটি অত্যন্ত নির্ভরযোগ্য কৌশল। তবে, দৃশ্যটি বেশ কয়েকজনের ডিএনএ দ্বারা দূষিত হলে সনাক্তকরণ জটিল হতে পারে। ডিএনএ প্রোফাইলিং 1984 সালে ব্রিটিশ জেনেটিসিস্ট স্যার অ্যালেক জেফ্রিস দ্বারা বিকশিত হয়েছিল , এবং ১৯৮৮ এন্ডারবাই হত্যা মামলায় কলিন পিচফর্ককে দোষী সাব্যস্ত করার জন্য ফরেনসিক বিজ্ঞানে প্রথম ব্যবহার করা হয়েছিল ।
ফরেনসিক বিজ্ঞানের বিকাশ এবং এখন রক্ত, ত্বক, লালা বা চুলের মিনিটের নমুনাগুলিতে জেনেটিক মিল পাওয়ার ক্ষমতা অনেক ক্ষেত্রে পুনরায় পরীক্ষা করার দিকে পরিচালিত করেছে। প্রমাণ এখন উন্মোচিত হতে পারে যা মূল পরীক্ষার সময় বৈজ্ঞানিকভাবে অসম্ভব ছিল। কিছু জায়গায় দ্বৈত ঝুঁকির আইন অপসারণের সাথে মিলিত, এটি মামলাগুলিকে পুনরায় খোলার অনুমতি দিতে পারে যেখানে পূর্বের বিচারগুলি জুরিকে বোঝানোর জন্য যথেষ্ট প্রমাণ তৈরি করতে ব্যর্থ হয়েছে। গুরুতর অপরাধের জন্য অভিযুক্ত ব্যক্তিদের মিলের উদ্দেশ্যে ডিএনএর নমুনা সরবরাহ করতে হতে পারে। ফরেনসিকভাবে প্রাপ্ত ডিএনএ ম্যাচের সবচেয়ে সুস্পষ্ট প্রতিরক্ষা হল দাবি করা যে প্রমাণের ক্রস-দূষণ ঘটেছে। এর ফলে গুরুতর অপরাধের নতুন কেসগুলির সাথে সূক্ষ্মভাবে কঠোর হ্যান্ডলিং পদ্ধতি হয়েছে৷
DNA প্রোফাইলিং ইতিবাচকভাবে গণহত্যার ঘটনার শিকার, গুরুতর দুর্ঘটনায় মৃতদেহ বা শরীরের অঙ্গপ্রত্যঙ্গ এবং গণযুদ্ধের কবরে পৃথক শিকার, পরিবারের সদস্যদের সাথে মিলের মাধ্যমে সনাক্ত করতে সফলভাবে ব্যবহার করা হয়।
ডিএনএ প্রোফাইলিং ডিএনএ পিতৃত্ব পরীক্ষায়ও ব্যবহার করা হয় যে কেউ একজন শিশুর জৈবিক পিতা-মাতা বা পিতা-মাতা কিনা তা নির্ধারণ করার জন্য পিতামাতার সম্ভাবনা সাধারণত ৯৯.৯৯% হয় যখন অভিযুক্ত পিতামাতা সন্তানের সাথে জৈবিকভাবে সম্পর্কিত। সাধারণ ডিএনএ সিকোয়েন্সিং পদ্ধতিগুলি জন্মের পরে ঘটে, তবে মা এখনও গর্ভবতী থাকাকালীন পিতৃত্ব পরীক্ষা করার জন্য নতুন পদ্ধতি রয়েছে।
তথ্যসূত্র
- Alberts, Bruce (২০০২)। Molecular Biology of the Cell; Fourth Edition। New York and London: Garland Science। আইএসবিএন ০-৮১৫৩-৩২১৮-১। অজানা প্যারামিটার
|coauthors=
উপেক্ষা করা হয়েছে (|author=
ব্যবহারের পরামর্শ দেয়া হচ্ছে) (সাহায্য) - Butler, John M. (2001) Forensic DNA Typing "Elsevier". pp. 14 – 15. আইএসবিএন ৯৭৮-০-১২-১৪৭৯৫১-০.
- Mandelkern M, Elias J, Eden D, Crothers D (১৯৮১)। "The dimensions of DNA in solution"। J Mol Biol। 152 (1): 153 – 61। PMID 7338906।
- Gregory S; ও অন্যান্য (২০০৬)। "The DNA sequence and biological annotation of human chromosome 1"। Nature। 441 (7091): 315 – 21। PMID 16710414।
- Watson J, Crick F (১৯৫৩)। "Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid" (পিডিএফ)। Nature। 171 (4356): 737 – 8। PMID 13054692।
- Berg J., Tymoczko J. and Stryer L. (2002) Biochemistry. W. H. Freeman and Company আইএসবিএন ০-৭১৬৭-৪৯৫৫-৬
- Abbreviations and Symbols for Nucleic Acids, Polynucleotides and their Constituents IUPAC-IUB Commission on Biochemical Nomenclature (CBN) Accessed 03 Jan 2006
- Ghosh A, Bansal M (২০০৩)। "A glossary of DNA structures from A to Z"। Acta Crystallogr D Biol Crystallogr। 59 (Pt 4): 620 – 6। PMID 12657780।
- Takahashi I, Marmur J. (১৯৬৩)। "Replacement of thymidylic acid by deoxyuridylic acid in the deoxyribonucleic acid of a transducing phage for Bacillus subtilis"। Nature। 197: 794 – 5। PMID 13980287।
- Agris P (২০০৪)। "Decoding the genome: a modified view"। Nucleic Acids Res। 32 (1): 223 – 38। পিএমআইডি 14715921।
- Created from PDB 1D65
- Wing R, Drew H, Takano T, Broka C, Tanaka S, Itakura K, Dickerson R (১৯৮০)। "Crystal structure analysis of a complete turn of B-DNA"। Nature। 287 (5784): 755 – 8। PMID 7432492।
- Pabo C, Sauer R। "Protein-DNA recognition"। Annu Rev Biochem। 53: 293 – 321। PMID 6236744।
বহিঃসংযোগ
- Crick's personal papers at Mandeville Special Collections Library, Geisel Library, University of California, San Diego
- DNA Interactive (requires Adobe Flash)
- DNA from the beginning
- Double Helix 1953 – 2003 National Centre for Biotechnology Education
- Double helix: 50 years of DNA, Nature
- Rosalind Franklin's contributions to the study of DNA
- U.S. National DNA Day — watch videos and participate in real-time chat with top scientists
- Genetic Education Modules for Teachers — DNA from the Beginning Study Guide
- Listen to Francis Crick and James Watson talking on the BBC in 1962, 1972, and 1974 ওয়েব্যাক মেশিনে আর্কাইভকৃত ১৫ ফেব্রুয়ারি ২০০৬ তারিখে
- DNA under electron microscope
- কার্লিতে DNA (ইংরেজি)
- DNA Articles — articles and information collected from various sources
- DNA coiling to form chromosomes
- DISPLAR: DNA binding site prediction on protein
- Dolan DNA Learning Center
- Olby, R. (2003) "Quiet debut for the double helix" Nature 421 (January 23): 402 – 405.
- Basic animated guide to DNA cloning