উপাদান (গণিত)

গণিতের ভাষায় কোন সেটের অন্তর্ভুক্ত স্বতন্ত্র যেকোন বস্তুই হল ঐ সেটের উপাদান বা সদস্য

সেট

লেখার মানে হল 1, 2, 3 এবং 4 সংখ্যাটি সেটের সদস্য। সেটের এক বা একাধিক উপাদান নিয়ে গঠিত সেটকে (যেমন:- , , ইত্যাদি) এর উপসেট বলা হয়। এমনকি সেট তার নিজেরই একটি উপসেট।

একটি সেট নিজেও অন্য আরেকটি সেটের উপাদান হতে পারে। উদাহরণ স্বরূপ, সেটটি বিবেচনা করা যাক। এখানে 1, 2, 3 এবং 4 কিন্তু সেটের উপাদান নয়। বরং সেটের মাত্র তিনটি উপাদান বিদ্যমান; যথা: 1 এবং 2 সংখ্যাদুটি আর সেটটি।

যেকোন কিছুই একটি সেটের সদস্য হতে পারে। যেমন: এমনই একটি সেট যার উপাদান হল লাল, সবুজ এবং নীল বর্ণসমূহ।

সংকেত ও পরিভাষা

সেট সদস্যতার প্রতীক স্বরূপ ϵ এর প্রথম কোন নথিভুক্ত ব্যবহার।

কোন সেটের সদস্যতাকে তথা অমুক তমুকের উপাদান সম্পর্কটিকে  "∈" প্রতীকের মাধ্যমে প্রকাশ করা হয়।

লেখার অর্থ “ হচ্ছে এর একটি উপাদান”।[1][2] অধিকাংশ বাংলাভাষী শিক্ষার্থী একে “ এলিমেন্ট ” পড়ে থাকে। তবে ইংরেজিতে এর বেশ কয়েকটি প্রকাশভঙ্গি রয়েছে। যেমন: “ is a member of ”, “ belongs to ”, “ is in ”, “ lies in ”। সেটের সদস্যতা বোঝাতে “ includes ” এবং “ contains ” লেখাও হয়ে হয়ে থাকে যদিও কিছু লেখক এদেরকে “ হচ্ছে এর একটি উপসেট” অর্থে ব্যবহার করে থাকেন।[3] আমেরিকান নৈয়ায়িক ও গণিতবিদ জর্জ বুলোস “contains” শব্দটি শুধু সেটের সদস্যতা এবং “includes” শব্দটি শুধু উপসেট নির্দেশে ব্যবহারের পক্ষে প্রবলভাবে জোর দিয়েছেন।[4]

∈ সম্পর্কের বিপ্রতীপ সম্পর্কT কে লেখা যেতে পারে—

যার অর্থ “ হচ্ছে এর ধারক বা আধার” (A contains or includes x)।

সেট সদস্যতার নঞতাকে  "∉" প্রতীকের মাধ্যমে প্রকাশ করা হয়। লেখার অর্থ “, এর উপাদান নয়” বাংলাভাষী শিক্ষার্থীরা যাকে “ নট এলিমেন্ট ”রূপে পড়ে থাকে।[1]

সর্বপ্রথম জুসেপ্পে পিয়ানো ১৮৮৯ সালে তার ভবিষ্যৎ-প্রভাবশালী অ্যারিথমিটিসেস প্রিন্সিপিয়া, নোভা মেথোডো এক্সপোসিটা গ্রন্থে ∈ প্রতীকটি ব্যবহার করেন।[5] এখানে X-পৃষ্ঠায় তিনি লেখেন:

Signum ∈ significat est. Ita a ∈ b legitur a est quoddam b; …

যার অর্থ

∈ প্রতীকটির মানে হল is। সুতরাং a ∈ b কে a is a b রূপে পড়া হয়; …

∈ প্রতীকটি প্রাচীন গ্রিক শব্দ ἐστί (অর্থ: “হয়”) এর প্রথম বর্ণ ছোট হাতের এপসাইলন (ϵ) এর একটি পরিমার্জনকৃত রূপ।[5]

অক্ষর
ইউনিকোড নামELEMENT OFNOT AN ELEMENT OFCONTAINS AS MEMBERDOES NOT CONTAIN AS MEMBER
এনকোডিংদশমিকহেক্সদশমিকহেক্সদশমিকহেক্সদশমিকহেক্স
ইউনিকোড8712U+22088713U+22098715U+220B8716U+220C
ইউটিএফ-৮226 136 136E2 88 88226 136 137E2 88 89226 136 139E2 88 8B226 136 140E2 88 8C
সংখ্যাসূচক অক্ষরের তথ্যসূত্র∈∈∉∉∋∋∌∌
নামযুক্ত অক্ষর তথ্যসূত্র∈∉∋
LaTeX\in\notin\ni\not\ni or \notni
Wolfram Mathematica\[Element]\[NotElement]\[ReverseElement]\[NotReverseElement]

সেটের গণনাংক

কোন নির্দিষ্ট সেটের উপাদান সংখ্যা হল সেই ধর্ম যাকে বলা হয় গণনাংক (cardinality), অনানুষ্ঠানিকভাবে যা সেটের আকার।[6] উপরের উদাহরণগুলোতে সেটের গণনাংক 4 যেখানে এবং উভয়ের গণনাংক 3 । অসীম সেট হল সেই সেট যার উপাদান সংখ্যা অসীম, পক্ষান্তরে সসীম সেট হল সেই সেট যার উপাদান সংখ্যা সসীম। এতক্ষণ পর্যন্ত আলোচিত প্রতিটি সেটই এক একটি সসীম সেট। স্বাভাবিক সংখ্যা বা ধনাত্মক পূর্ণ সংখ্যার সেট হল অসীম সেটের একটি উদাহরণ।

উদাহরণ

A = {1, 2, 3, 4 }, B = {1, 2, {3, 4}} এবং C = {red, green, blue} নামে সংজ্ঞায়িত উপর্যুক্ত সেটগুলোর আলোকে আমরা নিম্নোক্ত উক্তিগুলোকে সত্য পাব:

  • 2 ∈ A
  • 5 ∉ A
  • {3,4} ∈ B
  • 3 ∉ B
  • 4 ∉ B
  • হলুদ ∉ C

তথ্যসূত্র

  1. "Comprehensive List of Set Theory Symbols"Math Vault (ইংরেজি ভাষায়)। ২০২০-০৪-১১। সংগ্রহের তারিখ ২০২০-০৮-১০
  2. Weisstein, Eric W.। "Element"mathworld.wolfram.com (ইংরেজি ভাষায়)। সংগ্রহের তারিখ ২০২০-০৮-১০
  3. Eric Schechter (১৯৯৭)। Handbook of Analysis and Its FoundationsAcademic Pressআইএসবিএন 0-12-622760-8। p. 12
  4. George Boolos (ফেব্রুয়ারি ৪, ১৯৯২)। 24.243 Classical Set Theory (lecture) (Speech)। Massachusetts Institute of Technology
  5. Kennedy, H. C. (জুলাই ১৯৭৩)। "What Russell learned from Peano"। Notre Dame Journal of Formal Logic। Duke University Press। 14 (3): 367–372। এমআর 0319684ডিওআই:10.1305/ndjfl/1093891001অবাধে প্রবেশযোগ্য
  6. "Sets - Elements | Brilliant Math & Science Wiki"brilliant.org (ইংরেজি ভাষায়)। সংগ্রহের তারিখ ২০২০-০৮-১০
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.