Эліпс (e = 1/2), парабала (e = 1) и гіпербала (e = 2) з агульнымі фокусам F і дырэктрысай. (|FP| = e |PP'|)

Эксцэнтрысітэт — лікавая характарыстыка канічнага сячэння, якая паказвае ступень яго адхілення ад акружнасці. Звычайна абазначаецца “” ці “

Эксцэнтрысітэт не змяняецца пры рухах плоскасці і пераўтварэннях падобнасці.

Азначэнне

Усе невыраджаныя канічныя сячэнні, акрамя акружнасці, можна апісаць наступным спосабам:

Выберам на плоскасці пункт F і прамую L і зададзім рэчаісны лік e > 0. Тады геаметрычнае месца пунктаў P, для якіх адносіна адлегласцей да пункта F і да прамой L раўняецца e, з'яўляецца канічным сячэннем. Гэта значыць, калі ёсць праекцыя на , то

Звязаныя азначэнні

  • Кропка называецца фокусам канічнага сячэння.
  • Прамая называецца дырэктрысай, лік эксцэнтрысітэтам.

Уласцівасці

  • У залежнасці ад эксцэнтрысітэту выдзяляюцца наступныя віды канічных сячэнняў:
  • Эксцэнтрысітэт эліпса можна выразіць праз дзель вялікай паўвосі (a) на малую (b):
  • Для эліпса (або гіпербалы) эксцэнтрысітэт роўны адносіне адлегласці паміж фокусамі да большай (або, адпаведна, рэчаіснай) восі.

Літаратура

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.