Спін (ад англ.: spin — круціць, кручэнне) — уласны момант імпульсу элементарных часціц, які мае квантавую прыроду і не звязаны з перамяшчэннем часціцы як цэлага. Спінам называюць таксама ўласны момант імпульсу атамнага ядра ці атама; у гэтым выпадку спін вызначаецца як вектарная сума (вылічаная па правілах складання момантаў у квантавай механіцы) спінаў элементарных часціц, якія ўтвараюць сістэму, і арбітальных момантаў гэтых часціц, абумоўленых іх рухам унутры сістэмы.
Спін вымяраецца ў адзінках ħ (прыведзенай пастаяннай Планка, або пастаяннай Дзірака) і роўны дзе J — характэрны для кожнага віду часціц цэлы (у тым ліку нулявы) або паўцэлы дадатны лік — так званы спінавы квантавы лік, які звычайна называюць проста спінам (адзін з квантавых лікаў).
У сувязі з гэтым кажуць аб цэлым або паўцэлым спіне часціцы.
Існаванне спіна ў сістэме ўзаемадзейных тоесных часціц з'яўляецца прычынай новай квантавамеханічнай з'явы, якая не мае аналогіі ў класічнай механіцы: абменнага ўзаемадзеяння.
Уласцівасці спіна
Любая часціца можа валодаць двума відамі вуглавога моманту: арбітальным вуглавым момантам і спінам.
У адрозненне ад арбітальнага вуглавога моманту, які спараджаецца рухам часціцы ў прасторы, спін не звязаны з рухам ў прасторы. Спін — гэта ўнутраная, выключна квантавая характарыстыка, якую нельга растлумачыць у рамках рэлятывісцкай механікі. Калі прадстаўляць часціцу (напрыклад, электрон) як шарык, што верціцца, а спін як момант, звязаны з гэтым кручэннем, то аказваецца, што папярочная скорасць руху абалонкі часціцы павінна быць вышэй за скорасць святла, што недапушчальна з пазіцыі рэлятывізму.
Будучы адной з праяў вуглавога моманту, спін у квантавай механіцы апісваецца вектарным аператарам спіна алгебра кампанента якога цалкам супадае з алгебрай аператараў арбітальнага вуглавога моманту . Аднак, у адрозненне ад арбітальнага вуглавога моманту, аператар спіна не выражаецца праз класічныя зменныя, іншымі словамі, гэта толькі квантавая велічыня. Следствам гэтага з'яўляецца той факт, што спін (і яго праекцыі на якую-небудзь вось) можа прымаць не толькі цэлыя, але і паўцелыя значэнні (у адзінках пастаяннай Дзірака ħ).
Прыклады
Ніжэй паказаныя спіны некаторых мікрачасціц.
спін | агульная назва часціц | прыклады |
---|---|---|
0 | скалярныя часціцы | π-мезоны, K-мезоны, хігсаўскі базон, атамы і ядра 4He, цотна-няцотныя ядра, парапазітроній |
1/2 | спінарныя часціцы | электрон, кваркі, мюон, тау-лептон, нейтрына, пратон, нейтрон, атамы і ядра 3He |
1 | вектарныя часціцы | фатон, глюон, W- і Z-базоны, вектарныя мезоны, ортапазітроній |
3/2 | спін-вектарныя часціцы | Ω-гіперон, Δ-рэзанансы, гравіціна |
2 | тэнзарныя часціцы | гравітон, тэнзарныя мезоны |
На ліпень 2004 года, максімальны спін сярод вядомых барыёнаў мае барыённы рэзананс Δ(2950) са спінам 15⁄2. Спін ядраў можа перавышаць 20
Гісторыя
У 1921 вопыт Штэрна — Герлаха пацвердзіў наяўнасць у атамаў спіна і факт прасторавага квантавання напрамку іх магнітных момантаў.
У 1924 годзе, яшчэ да дакладнай фармулёўкі квантавай механікі, Вольфганг Паўлі ўводзіць новую, двухкампанентную ўнутраную ступень свабоды для апісання валентных электронаў у шчолачных металах. У 1927 годзе ён жа мадыфікуе нядаўна адкрытае ўраўненне Шродзінгера для ўліку спінавай зменнай. Мадыфікаванае такім чынам ураўненне носіць цяпер назву ўраўненне Паўлі. Пры такім апісанні ў электрона з'яўляецца новая спінавая частка хвалевай функцыі, якая апісваецца спінарам — «вектарам» у абстрактнай (гэта значыць не звязаным прама з звычайным) двухмернай спінавай прасторы.
У 1928 годзе Поль Дзірак будуе рэлятывісцкую тэорыю спіна і ўводзіць ужо чатырохкампанентную велічыню — біспінар.
Матэматычна тэорыя спіна аказалася вельмі празрыстай, і ў далейшым па аналогіі з ёй была пабудаваная тэорыя ізаспіна.
Спін і магнітны момант
Нягледзячы на тое, што спін не звязаны з рэальным кручэннем часціцы, ён тым не менш спараджае пэўны магнітны момант, а значыць, прыводзіць да дадатковага (у параўнанні з класічнай электрадынамікай) узаемадзеяння з магнітным полем. Адносіна велічыні магнітнага моманту да велічыні спіна называецца гірамагнітнай адносінай, і, у адрозненне ад арбітальнага вуглавога моманту, яна не роўная магнетону ():
Уведзены тут множнік g называецца g-фактарам часціцы; значэнні гэтага g-фактара для розных элементарных часціц актыўна даследуюцца ў фізіцы элементарных часціц.
Спін і статыстыка
З прычыны таго, што ўсе элементарныя часціцы аднаго і таго ж гатунку тоесныя, хвалевая функцыя сістэмы з некалькіх аднолькавых часціц павінна быць альбо сіметрычнай (гэта значыць не змяняецца), альбо антысіметрычнай (дамнажаецца на -1) адносна перастаноўкі месцамі двух любых часціц. У першым выпадку кажуць, што часціцы падпарадкоўваюцца статыстыцы Бозэ — Эйнштэйна і называюцца базонамі. У другім выпадку часціцы апісваюцца статыстыкай Фермі — Дзірака і называюцца ферміёнамі.
Аказваецца, што іменна значэнне спіна часціцы кажа пра тое, якія будуць гэтыя сіметрыйныя ўласцівасці. Сфармуляваная Вольфгангам Паўлі ў 1940 годзе тэарэма аб сувязі спіна са статыстыкай сцвярджае, што часціцы з цэлым спінам (s = 0, 1, 2, …) з'яўляюцца базонамі, а часціцы з паўцэлым спінам (s = 1⁄2, 3⁄2, …) — ферміёнамі.
Абагульненне спіна
Увядзенне спіна з'явілася ўдалым прымяненнем новай фізічнай ідэі: пастуляванне таго, што існуе прастора станаў, ніяк не звязаных з перамяшчэннем часціцы ў звычайнай прасторы. Абагульненне гэтай ідэі ў ядзернай фізіцы прывяло да паняцця ізатапічнага спіна, які дзейнічае ў адмысловай ізаспінавай прасторы. У далейшым, пры апісанні моцных узаемадзеянняў былі ўведзеныя ўнутраная каляровая прастора і квантавы лік «колер» — больш складаны аналаг спіна.
Спін класічных сістэм
Паняцце спіна было ўведзена ў квантавай тэорыі. Тым не менш, у рэлятывісцкай механіцы можна вызначыць спін класічнай (не квантавай) сістэмы як уласны момант імпульсу [1]. Класічны спін з'яўляецца 4-вектарам і вызначаецца наступным чынам:
дзе
- — тэнзар поўнага моманту імпульсу сістэмы (сумаванне праводзіцца па ўсіх часціцах сістэмы);
- — сумарная 4-скорасць сістэмы, вызначаная пры дапамозе сумарнага 4-імпульсу і масы M сістэмы;
- — тэнзар Леві-Чывіты.
У сілу антысіметрыі тэнзар Леві-Чывіты, 4-вектар спіна заўсёды артаганальны да 4-скорасці . У сістэме адліку, у якой сумарны імпульс сістэмы роўны нулю, прасторавыя кампаненты спіна супадаюць з вектарам моманту імпульсу, а часовая кампанента роўная нулю.
Іменна таму спін называюць уласным момантам імпульсу.
У квантавай тэорыі поля гэта вызначэнне спіна захоўваецца. У якасці моманту імпульсу і сумарнага імпульсу выступаюць інтэгралы руху адпаведнага поля. У выніку працэдуры другаснага квантавання 4-вектар спіна становіцца аператарам з дыскрэтнымі ўласнымі значэннямі.
Гл. таксама
- Тэарэма Паўлі
- Спінар
- Спін-арбітальнае ўзаемадзеянне
- Прэцэсія Томаса
Зноскі
- ↑ Вейнберг С. Гравитация и космология. — M.: Мир, 1975.
Літаратура
- Спін // Беларуская энцыклапедыя: У 18 т. Т. 15: Следавікі — Трыо / Рэдкал.: Г. П. Пашкоў і інш. — Мн. : БелЭн, 2002. — Т. 15. — С. 113. — 10 000 экз. — ISBN 985-11-0035-8. — ISBN 985-11-0251-2 (т. 15).
- Физическая энциклопедия. В 5 т. Т. 4: Пойнтинга-Робертсона — Стримеры (руск.) / Гл. ред. А. М. Прохоров. — М.: Большая российская энциклопедия, 1994. — 704 с. — 40 000 экз. — ISBN 5-85270-087-8.
Спасылкі
- Физики разделили электроны на две квазичастицы. Архівавана 2 жніўня 2009. Группа ученых из Кембриджского и Бирмингемского университетов зафиксировала явление разделения спина (спинон) и заряда (холон) в сверхтонких проводниках.
- Фізікі падзялілі электроны на спінон і арбітон. Група навукоўцаў з нямецкага Інстытута кандэнсаванага стану і матэрыялаў (IFW) дамаглася падзелу электрона на арбітон і спінон.